SITE INVESTIGATION REPORT

"S YAFFA'S SONS INC"

616 Chestnut Street et al.
City of Camden, Camden County, NJ 08103
Block 331

NJDEP PI # 025881, Activity # LSR160001 Case Tracking # 155674

Prepared for:

City of Camden Redevelopment Agency

520 Market Street # 1300 Camden, NJ 08102

Prepared by:

500 Horizon Drive, Suite 540 Robbinsville, New Jersey 08691

Montrose Project # 11595-03, Task 3a November 12, 2024

Table of Contents

1.0	EXECUTIVE SUMMARY	4
1.1	Site Description and History	4
1.2	·	
1.3		
2.0	PHYSICAL SETTING	7
2.1	Site Description / Land Use	8
2.2	Topography	8
2.3		
2.4	Surficial Geology	9
2.5	Bedrock Geology	9
2.6	Surface Water Bodies	9
2.7		10
3.0	REGULATORY REPORTING	11
3.1	l J	
3.2	Public Notification	11
4.0	ENVIRONMENTAL HISTORY	
4.1		
4.2	J	
4.3		
5.0	APPLICABLE REMEDIATION STANDARDS	
6.0	SITE INVESTIGATION – SOIL	
6.1		
6.2	1 0 07	
6.3		
6.4		
6.5	i i i	
6.6		
6.7	5 , 5	
6.8		
6.9		
6.1	,	
7.0	SITE INVESTIGATION - GROUNDWATER	
7.1	1 ,	
7.2	1	
8.0		
	AOC-2: Underground Storage Tanks	
8.2		
8.3		26
8.4		
	AOC-6a: Pile B – Weyhill Soil and Mixed / Unprocessed Materials	
	AOC-6b: Pile C – Weyhill Unprocessed Concrete, Brick, and Block	
	AOC-6c: Pile D – Weyhill Screened Soil & Crushed Demolition Debris	
	6.4.4 AOC-6d: Yaffa Solid Waste Beneath Pile B	
8.5		
8.6	, , , , , , , , , , , , , , , , , , , ,	
8.7	· · · · · · · · · · · · · · · · · · ·	
88	AOC-11: Former Railroad Spur	29

8.9	AOC-13: Former On-Site Operations	30
8.9.	1 AOC-13a: Steam Fitting Shop	30
8.9.	2 AOC-13b: Greenhouse	30
8.9.	3 AOC-13c: Junk Storage Areas	30
8.9.	4 AOC-13d: Automotive Repair	30
8.9.	5 AOC-13e: Yaffa Paper Stock Warehouse	30
8.9.	6 AOC-13f: Yaffa Scrap Metal Operations	31
8.9.	7 AOC-13g: Weyhill Soil/Debris Stockpiling	32
9.0 R	ECEPTOR EVALUATION	34
9.1	Land Use	34
9.2	Groundwater	34
9.3	Vapor Intrusion	35
9.4	Ecological Evaluation	
9.4.	1 Presence of Contaminants of Potential Ecological Concern (COPECs)	
9.4.	\ /	
9.4.	3 Presence of Contaminant Migration Pathways from a COPEC to an ENSR	36
10.0	DATA USABILITY	37
10.1		
	Analytical Data Quality Review	
11.0	VARIANCE AND DEVIATIONS	
11.2		
12.0	DISCUSSION	
13.0	CONCLUSIONS	50

List of Tables

- Table 1 May 5, 2023, Soil Analytical Results
- Table 2 May 13, 2024, Soil Analytical Results
- Table 3A September 5, 2024, Soil Analytical Results VOCs
- Table 3B September 5, 2024, Soil Analytical Results SVOCs
- Table 3C September 5, 2024, Soil Analytical Results Inorganics
- Table 3D September 5, 2024, Soil Analytical Results -SPLP
- Table 3E September 5, 2024, Soil Analytical Results -SPLP PFAS
- Table 3F September 5, 2024, Soil Analytical Results -PFAS
- Table 4A September 12, 2024, Soil Analytical Results VOCs
- Table 4B September 12, 2024, Soil Analytical Results SVOCs
- Table 4C September 12, 2024, Soil Analytical Results Inorganics
- Table 4D September 12, 2024, Soil Analytical Results SPLP
- Table 5 Monitoring Well Construction Details
- Table 6A September 23, 2024, Groundwater Analytical Results VOCs
- Table 6B September 23, 2024, Groundwater Analytical Results SVOCs
- Table 6C September 23, 2024, Groundwater Analytical Results Inorganics
- Table 7 Land Use Evaluation

List of Figures

Figure 1 – Site Location Map

Figure 2 – Aerial Photograph

Figure 3 – Area of Concern Map

Figure 4 – Soil Sample Locations - May 2023, May 2024, and September 2024

Figure 5 – Soil Sample Summary Results from May 5, 2023

Figure 6 - Soil Post-Excavation Summary Results from May 13, 2024

Figure 7A – Soil Analytical Exceedance Map – September 2024

Figure 7B - PFAS Soil Analytical Exceedance Map - September 2024

Figure 8 - Soil Cross Section Map

Figure 9 – Groundwater Analytical Results and Contour Map – September 2024

Figure 10 – Land Use Within 200 Feet of the Site

List of Appendices

Appendix A – Boring Logs and Well Construction Logs, Permits, and Form Bs

Appendix B – Photographic Documentation

Appendix C1 – Laboratory Analytical Report (J279709) from May 5, 2023

Appendix C2 - Laboratory Analytical Report (J304060) from May 13, 2024

Appendix C3 – Laboratory Analytical Report (J310859) from September 5, 2024

Appendix C4 – Laboratory Analytical Report (J311355) from September 12, 2024

Appendix C5 – Laboratory Analytical Report (J311991) from September 23, 2024

Appendix D - Groundwater Sampling Logs

Appendix E - NJDEP SPLP Spreadsheet Calculations and Alternative Remediation SRS Form

Appendix F – NJDEP EPH Spreadsheet Calculations

Appendix G1 – Stockpiled Soil and Mixed Debris Waste Manifests

Appendix G2 – AOC-10 Soil Remediation Manifests

Appendix G3 – Investigation-Derived Waste Manifests

Appendix H – Updated Receptor Evaluation

1.0 EXECUTIVE SUMMARY

1.1 Site Description and History

This report presents information pertaining to the Site Investigation (SI) conducted by Montrose Environmental Solutions, Inc. (Montrose) on behalf of the City of Camden Redevelopment Agency (CRA).

The property (the Site) associated with New Jersey Department of Environmental Protection (NJDEP) Contaminated Site Remediation & Redevelopment Program (CSRRP) Program Interest (PI) # 025881, Activity # LSR1600001, consists of 20 parcels that comprise the majority of Block 331. The main address associated with this case is 616 Chestnut Street et al., Camden, Camden County, NJ 08103. The Site is vacant commercial property which is owned by the City of Camden.

"S YAFFA'S SONS INC"						
CSRRP PI #	PI # 025881					
CSRRP Activity #	LSR160001					
Solid Waste PI #	U2318					
Case Tracking #	155674					
	96-04-19-0840-37					
	13-03-27-1439-31					
Incident ID #s	21-03-02-1753-18					
incident ib #5	21-04-12-1021-39					
	21-07-15-1018-22					
	23-03-27-1509-15					
Regulated UST Closure #	N02-1710					
Address	616 Chestnut Street et al., Camden, NJ 08103					
Location	20 parcels on Block 331					
Property Size	1.61 acres (includes 6 additional parcels not					
Property Size	traditionally associated with this PI #)					
Coordinates	X=319127, Y=400789					
Property Owner	City of Camden					
PRCR	City of Camden					
Responsible Party	S Yaffa and Sons, Inc., Weyhill, WRH 1, LLC, et al.					

The history and status of PI # 025881, Activity # LSR160001, can be summarized as follows:

- On March 30, 2022, Montrose was retained by CRA to provide environmental consulting services and Licensed Site Remediation Professional (LSRP) oversight related to the investigation and remediation of the entire Site.
- CRA retained The Ambient Group, LLC (Ambient) to remove stockpiled waste (soil, demolition debris, and trash) beginning in March 2023 to June 2024.
- On November 17, 2023, Montrose submitted a Case Creation Form to NJDEP, proposing clarification of which lots are included in PI # 025881, and requesting creation of a new PI # specific to additional lots on Block 324 that were formerly associated with the Site operation and ownership. For the purposes of this report, the Site is as described in

Montrose's August 14, 2024 Preliminary Assessment Report (PAR) - consisting of 20 parcels associated with PI # 025881, plus 6 parcels requested for inclusion by the City of Camden.

- Montrose issued an August 14, 2024 PAR following NJDEP's March 2018 Preliminary Assessment Technical Guidance (Version 1.3). Montrose's PAR identified 15 Areas of Concern (AOCs), and Montrose recommended conducting an SI to address 9 of the 15 AOCs identified.
- The SI was conducted under the direction of Christopher D. Valligny, LSRP of Record (LSRP # 629039) and in accordance with NJDEP regulations and guidance. The scope of the investigation included soil borings, test pits, soil sampling, well installation, and groundwater sampling to address the 9 AOCs.
- The regulatory timeframes to complete the Remedial Investigation and Remedial Action for this case were March 1, 2015, and February 28, 2018, respectively. Note that the City of Camden certified to NJDEP that they are a local governmental entity exempt from Spill Act liability, and therefore exempt from meeting these timeframes.

1.2 Site Investigation Findings

Four soil borings, eight test pits, and three permanent monitoring wells were installed at the Site in September 2024 to investigate nine AOCs identified in Montrose's August 14, 2024 PAR. Historical fill was observed in the upper one to three feet across the Site. Soil exceedances were generally limited to shallow soil samples collected at 1-1.5 feet bgs. SI sampling throughout the Site conducted in September 2024 reported EPH results ranging from non-detect to 4,000 milligrams per kilogram (mg/kg). A few Volatile Organic Compounds (VOCs) were detected above laboratory Reporting Limits (MTBE, TBA, TCE, etc.), but no VOC exceedances of NJDEP Soil Remediation Standard (SRS) were reported in soil. A total of seven shallow soil samples reported Semi-Volatile Organic Compounds (SVOCs) exceeding a NJDEP Soil Remediation Standard (SRS). Polychlorinated Biphenyls (PCBs) exceeded NJDEP SRS in several shallow soil samples. All soil Per- and Polyfluoroalkyl Substances (PFAS) meet the interim Direct Contact SRS. Synthetic Precipitation Leaching Procedure (SPLP) was performed to calculate a Site-Specific SRS for the Migration to Groundwater (MGW) Pathway (SS-SRSMGW). Two samples exceeded the calculated SS-SRSMGW.

The groundwater table was measured at approximately 9 to 10 feet bgs in monitoring wells installed at the Site. Groundwater flow direction is estimated to be to the southeast, based on calculated static groundwater table elevations at the wells. If confirmed by multiple gauging events, MW-1 would be the up-gradient well and represent background groundwater conditions coming on to the Site. No exceedances were reported in MW-1.

Groundwater samples (analyzed for VOCs, SVOCs, and Metals only) reported exceedances of Metals including Aluminum, Arsenic, Iron, Lead, Manganese, and Sodium. Note that the GWQS for Aluminum, Iron, Manganese, and Sodium do not apply at this Site. These limits are based on secondary drinking water characteristics (such as taste and odor), rather than a health risk. The shallow groundwater in the area of the Site is not used for potable purposes. Arsenic and Lead

exceedances were only reported from MW-2, at the former location of the Yaffa scrap metal and junk pile (AOC-6d).

1.3 Site Investigation Conclusions

No exceedances of Total EPH, VOCs, Herbicides/Pesticides, or Cyanide were reported. The majority of soil exceedances were reported in the shallow soil samples, and include 5 PAHs, 2 SVOCs, Total PCBs, and 10 Metals. Two samples exceeded the calculated SS-SRSMGW for PFAS compounds. The only exceedances reported from the deep soil samples were Nickel and Mercury in test pit TP-8 from 8 to 8.5 feet bgs.

In groundwater, Arsenic and Lead exceedances were only reported from MW-2 in one sampling event, at the former location of the Yaffa scrap metal and junk pile (AOC-6d). This well is located at the former location of the Yaffa scrap metal and junk pile and Weyhill's Pile B (AOC-6a and AOC-6d). Additional sampling is recommended to confirm these exceedances, but it appears they are delineated by MW-1 (up-gradient to the northwest) and MW-3 (cross-gradient to the southwest).

The Remedial Investigation will need to include a deeper examination of which exceedances are related to which AOCs (location-specific AOCs versus site-wide AOCs). This is especially true of historical fill. Additional samples may be needed to tease out the PAH and Metal exceedances related to fill material versus long-term industrial use, spills, and discharges.

Montrose recommends Remedial Investigation activities at 7 of the 9 AOCs.

2.0 PHYSICAL SETTING

Montrose reviewed mapping data on the NJ-GeoWeb Geographic Information System (GIS) application (Version 3.0) provided by NJDEP's Bureau of Information Systems (NJ-GeoWeb), United States Geological Survey's *Bedrock Geologic Map of Central and Southern New Jersey* (1998), NJ Geological Survey's *Physiographic Provinces of New Jersey* circular, and other sources to describe the location and setting of the Site.

The Site is located in the City of Camden, in Camden County, New Jersey. Geographic coordinates for a central location at the Site are X=319127, Y=400789 (NAD 83 NJ State Plane, US feet). For the purposes of the PA Report, the "Site" was defined as an approximately 1.61-acre "Site" comprised of 26 parcels. Of the 26 parcels, 20 parcels are associated with NJDEP CSRRP PI # 025881 and an additional six parcels (Lots: 46, 86, 87, 89, 113, and 114) were requested to be included in the PA. The 26 Site parcels described in this report total approximately 1.61 acres (**Figure 1**).

According to Camden County tax records, the 26 parcels is described as follows:

Block #	Lot#	Property Address
	41	SS Chestnut 60 E 6th Street (formerly 606-608)
	46	602 Chestnut Street
	48	SS Chestnut 60 E 6th Street (formerly 610)
	49	SS Chestnut 60 E 6th Street (formerly 610)
	50	SS Chestnut 60 E 6th Street (formerly 614-616)
	52	SS Chestnut 60 E 6th Street (formerly 620)
	54	624-644 Chestnut Street (formerly 624)
	55	624-644 Chestnut Street (formerly 626)
	56	624-644 Chestnut Street (formerly 628)
	57	624-644 Chestnut Street (formerly 630)
331	58	624-644 Chestnut Street (formerly 632)
331	59	624-644 Chestnut Street (formerly 634)
	60	624-644 Chestnut Street (formerly 636)
	61	624-644 Chestnut Street (formerly 638)
	62	624-644 Chestnut Street (formerly 640)
	63	624-644 Chestnut Street (formerly 642)
	64	624-644 Chestnut Street (formerly 644)
	65	624-644 Chestnut Street (formerly 646)
	67	NW Sycamore Street & 7 th Street
	75	619 Sycamore Street (formerly 611-633)
	80	601-609 Sycamore Street
	86	1114 South 6 th Street

Block #	Lot#	Property Address						
	87	1112 South 6 th Street						
	89	1108 South 6 th Street						
	113	602 1/2 Chestnut Street						
	114	604 Chestnut Street						

Note: Gray shaded are additional parcels not included with NJDEP CSRRP PI # 025881.

2.1 Site Description / Land Use

The Site is surrounded by residential and commercial properties and roadways, including Chestnut Street, Sycamore Street, S 6th Street, and S 7th Street.

The Site parcels have been occupied since at least 1891 and have included a mixture of residential and commercial uses. The "S Yaffa & Sons Inc" facility that initiated the environmental case and is the subject of this report dates back to at least 1927, based on a City Directory image that identified "Yaffe Sami Junk" as the occupant at 619 Chestnut Street. Historical operations included a scrap metal yard, automotive repair, junk storage, junkyard, a greenhouse, a church, and a paper stock warehouse, as shown in Sanborn maps from 1891 through 1994.

The Yaffa operations ceased when Yaffa & Sons, Inc. sold the property to Weyhill Realty Holdings, LLC and WRH 1, LLC (Weyhill) on July 19, 2019. Weyhill reportedly imported and stockpiled soil and debris from construction and demolition jobs in Philadelphia without proper permits. The former owners have been evicted from the Site, and the Site parcels are now owned by CRA and/or the City of Camden.

An aerial photograph of the Site prior to stockpile removal is provided as Figure 2.

Features and properties surrounding the Site consist of:

Direction	General Land Use	Street/Feature				
North	Residential, Commercial	Chestnut Street, additional Yaffa facility parcels and vacant lots.				
East	Residential, Commercial	South 7 th Street, Court Apartments, and commercial shops				
South	Residential, Commercial	Sycamore Street, vacant lots, residential, commercial shops				
West	Residential, Commercial	South 6 th Street, vacant lots, residential, commercial shops				

2.2 Topography

According to the USGS 7.5-Minute Series Topographic Quadrangle Map, the Site elevation is approximately 20 feet above Mean Sea Level (MSL). The general topography of the Site is relatively flat at this time as large piles of soil, debris, and trash have been removed. A four-inch layer of gravel has been applied across the Site. Regional topography in the vicinity of the Site slopes southwest towards the Delaware River. A USGS topographic map of the area is provided on **Figure 1**.

2.3 Regional Geology

The Site is located within the Coastal Plain Physiographic Province of New Jersey. The NJ Geological Survey's "Physiographic Provinces of New Jersey" Information circular describes the Coastal Plain Province as occupying three-fifths of the state with an area of 4,667 square miles. It includes all of Atlantic, Burlington, Camden, Cape May, Cumberland, Gloucester, Monmouth, Ocean, and Salem Counties and parts of Mercer and Middlesex. The unconsolidated deposits of the Coastal Plain dip gently to the southeast.

Coastal Plain Sediments overlap bedrock formations of the Piedmont providence southeast of a line roughly between Carteret and Trenton, continuing southwest into Pennsylvania. These Coastal Plain Sediments thicken significantly southeastward from a feather edge along the northwestern margin of the province, to approximately 4,500 feet near Atlantic City, and to a maximum of more than 40,000 feet in the area of the Baltimore Canyon Trough (50 miles offshore from Atlantic City). In Camden County, the Cretaceous and Tertiary sediments dip gently to the southeast with the oldest sediments cropping out at the Delaware River.

2.4 Surficial Geology

The Coastal Plain geologic unit underlying the Site has been identified as the Unit 2 Cape May Formation (Qcm2). The formation is characterized as "sand, pebble gravel, minor silt, clay, peat, and cobble gravel; very pale brown, yellow, reddish yellow, white, olive yellow, gray. As much as 40 feet thick." Sand is quartz with a little glauconite and a trace of mica and feldspar. The formation forms a terrace with a maximum surface elevation of about 35 feet.

According to NJ-GeoWeb, the Site is not in an area that has been mapped as historical fill. The environmental case described in this report refers to soil with fill material, predominantly from the surface to three feet below ground surface (bgs). No evidence of fill material was observed below that depth in test pits and borings advanced at the Site. Subsurface soils were generally described as sand with fill (brick, asphalt, ash, cinders, wood, debris, and glass) to three feet bgs, sand from three feet to 11 feet bgs, and silty sands from 11-15 feet bgs.

2.5 Bedrock Geology

Bedrock elevation and topography is not mapped in the area. The bedrock formation underlying the Site is depicted as the Potomac Formation (Kp), characterized as "sand, fine to coarse grained, interbedded with white, red, or yellow clay". Bedrock was not encountered during the investigation of any AOCs.

2.6 Surface Water Bodies

The Site does not contain any surface water bodies, or streams. There are no wetlands on the Site based on review of the U.S. Fish and Wildlife Service National Wetlands Inventory (NWI) maps and the Site is not in the 100-year or 500-year floodplain. The surface water bodies closest to the Site are the Cooper River (3,600 feet to the northeast) and the Delaware River (4,100 feet to the west).

2.7 Hydrogeology

The groundwater aquifer below the Site is identified as the Potomac-Raritan-Magothy aquifer system. Three monitoring wells have been installed at the Site to 15 feet to 17 feet in depth. Groundwater was encountered at approximately 10 feet bgs. Based on the groundwater elevations at the Site shallow groundwater flow is to the southwest.

3.0 REGULATORY REPORTING

The SI was conducted under the direction of Christopher D. Valligny (LSRP # 629039) and in accordance with all NJDEP regulations and guidance.

On November 17, 2023, Montrose submitted a Case Creation Form to NJDEP, clarifying which lots are included in PI # 025881, and requesting creation of a new PI # specific to additional lots on Block 324 that were formerly associated with the Site operation and ownership. For the purposes of this report, the Site consists of 26 parcels totaling approximately 1.61 acres, as described in Montrose's August 14, 2024 PA Report.

The regulatory timeframes to complete the remedial investigation and remedial action for this case are March 1, 2015, and February 28, 2018, respectively.

3.1 Prior Reporting

Montrose has issued the following documents to NJDEP and/or CRA regarding this case:

- Various letters regarding waste characterization results and initial investigation findings
- Various required NJDEP forms
- August 14, 2024 Preliminary Assessment Report
- August 30, 2024 Site Investigation Workplan
- September 5, 2024 Quality Assurance Project Plan / Soil and Groundwater Sampling Plan

3.2 Public Notification

To fulfill the Public Notification requirements of N.J.A.C. 7:26C-1.7, Montrose posted public notification signs (English and Spanish) at the Site on October 3, 2022. The signs identify the environmental case and relevant contact information, and states that the environmental cleanup is in progress at the Site. Montrose has submitted a *Public Notification and Outreach Form* to NJDEP as a stand-alone submittal on March 8, 2023 and has provided copies to the City of Camden Municipality Clerk and the Camden County Health Officer.

4.0 ENVIRONMENTAL HISTORY

On March 30, 2022, Montrose was retained by CRA to provide environmental consulting services and LSRP oversight related to the investigation and remediation of the entire Site.

4.1 Waste Characterization and Above-Grade Waste Removal

Montrose retained Vargo Associates to perform a topographic survey of the piles and assist with calculating volumes. The City retained Ambient to remove all above-grade wastes. Waste characterization sampling for former Pile D was performed by Ambient, and Montrose performed waste characterization sampling of former Piles B and C.

Montrose then oversaw waste removal activities conducted by Ambient. All above-grade wastes from the Yaffa Waste Pile and the Weyhill Piles B, C, and D were all removed from the Site between March 2023 and June 2024 for off-site disposal. The total volume and weight of soil and mixed debris removed from the Site are:

- 10,020 cubic yards (14,028 tons) of mixed debris
- 39,069 cubic yards (54,696 tons) of soil

4.2 Preliminary Assessment

Montrose's August 14, 2024 PA Report identified and described 15 AOCs associated with the Site, as depicted on **Figure 3**. History, documentation, and detail regarding these AOCs can be found in the PAR. Montrose recommended conducting SI activities to address 9 of the 15 AOCs, listed below:

AOC ID	Description	SI Recommended					
AOC-1	Former 1,000-gallon No. 2 Heating-Oil AST, 616 Chestnut Street (Lot 50) and Former 275-Gallon Heating-Oil AST at 604 Chestnut Street (Lot 46)	No					
AOC-2	Former Registered 500- or 550-Gallon Gasoline/Diesel-Fuel UST, Removed November 18, 2002	Yes					
AOC-3	Loading/Unloading Areas for Trash and Demolition debris	Yes					
AOC-4	Storage Pads, Including Drum and/or Waste Storage	Yes					
AOC-5	Stormwater Collection System	No					
	Waste Piles, as defined by N.J.A.C. 7:26						
	AOC-6a: Pile B – Soil and Mixed / Unprocessed Materials	Yes					
AOC-6	AOC-6b: Pile C – Unprocessed Concrete, Brick, Block						
	AOC-6c: Pile D – Mixture of Screened Soil and Crushed Demolition debris						
	AOC-6d: Solid Waste Beneath Pile B						
AOC-7	Historical Fill	Yes					
AOC-8	Three Pole-Mounted Electrical Transformers	No					
AOC-9	Spill Incident # 96-04-19-0840-37: Spills from trucks cranes, and containers	Yes					
AOC-10	Spill Incident # 23-03-27-1509-15: Stained soil underneath screening equipment	Yes					

AOC ID	Description	SI Recommended
AOC-11	Former Railroad Spur	Yes
AOC-12	Former Residential Dwellings	No
	Former On-Site Operations	
	AOC-13a: Steam Fitting Shop	
	AOC-13b: Greenhouse	
AOC-13	AOC-13c: Junk Storage Areas	
AUC-13	AOC-13d: Automotive Repair	Yes
	AOC-13e: Yaffa Paper Stock Warehouse	
	AOC-13f: Yaffa Scrap Metal Operations	
	AOC-13g: Weyhill Soil/Debris Stockpiling Operations	
AOC-14	Off-site Coal & Wood Yard - 621 Kaighn Ave	No
AOC-15	Off-site Historical Cleaners - 1136 Baring Street	No

4.3 Initial Remedial Action

On March 27, 2023, CRA removed an abandoned piece of soil screening equipment. Significant petroleum staining was observed on surface soils beneath the equipment.

On May 5, 2023, Montrose collected soil samples to assess the stained area (AOC-10) and analyzed them for 'Unknown Petroleum Hydrocarbon' parameters, per Table 2-1 of the *Technical Requirements for Site Remediation* (N.J.A.C. 7:26E). Based on the laboratory analytical results and visual observations, Montrose believes the material beneath the former screener to be hydraulic fluid or a similar petroleum product. No elevated photoionization detector (PID) readings were detected.

Upon investigation, Montrose noted that visible staining only extended to approximately one inch below the surface, and that the area was underlaid with light-gray crushed modified stone. Four soil samples (SS-01-0-1, SS-02-0-1, SS-01-1-6, and SS-03-0-1) were collected. Analytical parameters included Extractable Petroleum Hydrocarbons (EPH), with a contingency for 25% of the samples where EPH is detected. Contingency analyses included VOCs, SVOCs, PCBs, and Target Analyte List (TAL) Metals, and were activated on sample SS-01-0-1. Library searches for up to 15 highest Tentatively Identified Compounds (TICs) were also performed for VOCs and SVOCs.

On May 13, 2024, Montrose directed Ambient to excavate the stained soils for off-site disposal. The waste characterization sample results did not exceed the TCLP / RCRA Characteristic Waste Limits and the material was classified as non-hazardous. Ambient disposed of 15.76 tons of material at the Pennsauken Sanitary Landfill (PCFACC). Montrose directed the contractor to backfill the excavation with surrounding soils to match grade.

Montrose collected five post-excavation soil samples (PE-1-0.0-0.5, PE-2-0.0-0.5, PE3-0.0-0.5, PE4-0.0-0.5, and PE-5-2.0-2.5). The final extent of the excavation measured 15 feet by 10 feet, with a depth of two feet bgs. Five post-excavation samples were collected for Total EPH and Mercury. The excavation, restoration, and sample results are discussed in detail in **Sections 6.4**.

5.0 APPLICABLE REMEDIATION STANDARDS

Environmental samples collected during the investigation and remediation are compared to the following remediation standards:

- 2021 Residential Direct Contact SRS (RDCSRS) lower of the 2021 Residential Ingestion-Dermal vs. Inhalation SRS
- 2021 Non-Residential Direct Contact SRS (NRDCSRS) lower of the 2021 Non-Residential Ingestion-Dermal vs. Inhalation SRS
- 2021 Default SRS for the Migration-to-Groundwater Pathway (SRSMGW)
- 2021 NJ Soil Leachate Remediation Standard
- Calculated Site-Specific SRSMGW, as described in this report
- 2020 Ground Water Quality Standards (GWQS)

6.0 SITE INVESTIGATION - SOIL

6.1 Geophysical Survey

On June 25, 2024, Summit Drilling, LLC (Summit) conducted a geophysical survey of the entire Site. The geophysical survey consisted of electro-magnetic (EM) scan, radio-frequency scan, and a ground-penetrating radar (GPR) scan. No distinct GPR images, evidence of USTs or former USTs, or previously unknown utilities were located, but EM anomalies were detected and delineated. Results were used to evaluate potential AOCs. The findings are described in more detail, and the geophysical report is attached as an appendix, in Montrose's August 14, 2024 PAR.

6.2 Soil Sampling Methodology

Soil sampling was performed using a combination of stainless-steel trowel sampling, direct-push drilling, and test pit excavation. The sampling procedure generally follows the plan proposed in Montrose's August 30, 2024 Site Investigation Workplan, with a few deviations based on logistics and field observations. Actual soil sample locations are depicted on **Figure 4**.

Soil stratigraphy and sample recovery were recorded on boring logs that are included in **Appendix A**. Borings and test pits were field screened for volatile organic vapors using a PID. Peak responses were recorded on the boring and test pit logs. The PID used for field screening was calibrated daily in accordance with manufacturer specifications using a standard gas (isobutylene).

One to two soil samples were collected from each boring or test pit as proposed in the SIWP. Generally, the first sample was collected at 1-1.5 feet bgs, and the second sample was collected six inches above the groundwater table. No elevated PID readings were identified during the SI sampling, therefore the shallow samples were collected from the 1- to 1.5-foot bgs interval as proposed. At the former UST location (AOC-2), samples were collected at 6-6.5 feet and 8-8.5 feet bgs, as proposed.

Samples were placed on ice in a cooler and submitted under proper chain of custody (COC) procedures to Eurofins Environment Testing Northeast, LLC in Edison, New Jersey (Eurofins, NJDEP Certification # 12028). Photographs taken during the investigation are provided as **Appendix B**.

6.3 May 5, 2023 Soil Sampling

On May 5, 2023, Montrose collected soil samples to assess the area of petroleum surface staining (AOC-10) and analyzed them for 'Unknown Petroleum Hydrocarbon' parameters, per Table 2-1 of the *Technical Requirements for Site Remediation* (N.J.A.C. 7:26E). No elevated photoionization detector (PID) readings were detected. Based on laboratory analytical results and visual observations, Montrose believes the material beneath the former screener to be hydraulic fluid or a similar petroleum product. The spill was reported to NJDEP and Incident # 23-03-27-1509-15) was assigned.

Four soil samples (SS-01-0-1, SS-02-0-1, SS-01-1-6, and SS-03-0-1) were collected. Analytical parameters included EPH with a contingency for 25% of the samples where EPH is detected. Contingency analyses included VOCs, SVOCs, PCBs, and TAL Metals, and were activated on sample SS-01-0-1. Library searches for up to 15 highest TICs were also performed for VOCs and SVOCs. Exceedances are summarized below:

Sample ID	Depth	Total EPH (mg/kg)	Mercury
SS-01-0-1	0 to 1 inch	48,000	0.11
SS-01-1-6	1 to 6 inches	6,100	Not analyzed
SS-02-0-1	0 to 1 inch	1,500	Not analyzed
SS-03-0-1	0 to 1 inch	8,000	Not analyzed

All results reported in milligrams per kilogram (mg/kg)

bgs = Below ground surface

Exceeds 2021 NJ Residential Soil Remediation Standard (RSRS)

Exceeds 2021 NJ SRS for the Migration to Groundwater Pathway (SRSMGW)

Mercury was reported at 0.11 mg/kg, slightly exceeding the 0.10 mg/kg NJDEP SRSMGW. EPH concentrations ranged from 1,500 to 48,000 mg/kg, exceeding the default product limit of 8,000 mg/kg and default residential SRS of 5,300 mg/kg. Based on the EPH concentrations, excavation of the stained area was recommended.

The laboratory analytical report is provided as **Appendix C-1**.

6.4 May 13, 2024 Soil Sampling

On May 13, 2024, Montrose directed Ambient to excavate the stained soils for off-site disposal. The waste characterization sample results did not exceed the TCLP / RCRA Characteristic Waste Limits and the material was classified as non-hazardous. Ambient disposed of 15.76 tons of material at the Pennsauken Sanitary Landfill (PCFACC). Montrose directed the contractor to backfill the excavation with surrounding soils to match grade.

Montrose collected five post-excavation soil samples (PE-1-0.0-0.5, PE-2-0.0-0.5, PE3-0.0-0.5, PE4-0.0-0.5, and PE-5-2.0-2.5). Samples collected at 0-0.5 feet bgs are sidewall samples and the sample at 2.0-2.5 feet bgs was collected at the base of the excavation. The final extent of the excavation measured 15 feet by 10 feet, with a depth of 2 feet bgs. Five post-excavation samples were collected for Total EPH and Mercury.

Sample ID	Depth (feet bgs)	Total EPH	Mercury
PE-1-0-0.5	0-0.5	160	0.59
PE-2-0-0.5	0-0.5	430	0.22
PE-3-0-0.5	0-0.5	39	0.50
PE-4-0-0.5	0-0.5	230	0.62
PE-5-2-2.5	2-2.5	7,600	1.8

All results reported in milligrams per kilogram (mg/kg)

bgs = Below ground surface

Exceeds 2021 NJ Residential Soil Remediation Standard (RSRS)

Exceeds 2021 NJ SRS for the Migration to Groundwater Pathway (SRSMGW)

Total unfractionated EPH concentrations ranged from 39 to 430 mg/kg on the excavation sidewalls, and 7,600 mg/kg on the excavation base. Using the NJDEP's 2021 EPH Category 2 Ingestion/Dermal Residential and Nonresidential Calculator spreadsheets, the fractionated EPH concentration in the base sample was calculated at 1,376.3 mg/kg (after removing non-anthropogenic EPH), and site-specific standards are calculated at 25,000 (residential), 35,000 (non-residential), and 17,000 (free product limit). NJDEP spreadsheet calculation forms and the NJDEP's Alternative Remediation Soil Remediation Standard Form are provided as **Appendix E**.

Mercury concentrations exceed the default SRSMGW in all post-excavation samples collected. Sample PE-5-2.0-2.5 with the highest concentration was further analyzed by SPLP to develop a site-specific standard for the SRSMGW pathway for Mercury. SPLP results are discussed in **Section 6.10**.

The laboratory analytical report is provided as **Appendix C-2**.

6.5 September 5, 2024 Direct-Push Soil Sampling

On September 5, 2024, Montrose directed and oversaw direct-push drilling by East Coast Drilling Inc. (ECDI) of Mount Laurel, NJ. Four soil borings (GP-1, GP-2, GP-3, and GP-4) were advanced to depths of 10 to 18 feet bgs. Soil samples at GP-1-2024 were analyzed for EPH Category 1, plus Target Compound List (TCL) VOCs including Tert-Butyl Alcohol (TBA) to assess for gasoline and diesel fuel. Remaining samples were analyzed as proposed in the SIWP for a combination of EPH, VOCs, SVOCs, Polyaromatic Hydrocarbons (PAHs), PCBs, Herbicides, Pesticides, Cyanide, TAL Metals, and PFAS.

A summary of SVOC and total PCB exceedances from September 5, 2024 is presented below:

Sample ID	Depth (feet bgs)	· Blaia		Total PCBs
GP-2-2024-1-1.5	1-1.5	0.86	0.72	2.2*
GP-3-2024-1-1.5	1-1.5	MS	MS	5.2*
GP-4-2024-1-1.5	1-1.5	MS	MS	0.63

All results reported in milligrams per kilogram (mg/kg) B[a]a = Benzo[a]anthracene

bgs = Below ground surface B[a]p = Benzo[a]pyrene

MS = Meets standards

Exceeds 2021 NJ SRS for the Migration to Groundwater Pathway (SRSMGW)

Exceeds 2021 NJ Residential Soil Remediation Standard (RSRS)

Exceeds 2021 NJ Non-Residential Soil Remediation Standard (NRSRS)

^{*} Exceeds NRSRS and SRSMGW

A summary of Metals results from September 5, 2024 is presented below:

Sample ID	Depth (feet bgs)	Hg	Sb	As	Cd	Cu	Cr	Pb	Ni	Ag	Zn
GP-2-2024-1-1.5	1-1.5	0.63	13.1	MS	34	4,450	102	3,040*	217	1.3	1,740
GP-2-2024-8.5-9	8.5-9	MS	MS	22.6*	MS	MS	<20	MS	MS	MS	MS
GP-3-2024-1-1.5	1-1.5	0.65	MS	MS	MS	MS	28.6	258	MS	MS	MS
GP-3-2024-9.5-10	9.5-10	MS	MS	MS	MS	MS	<20	MS	MS	MS	MS
GP-4-2024-1-1.5	1-1.5	0.81	MS	MS	2.5	MS	47.6	351	54.9	MS	MS
GP-4-2024-10-10.5	10-10.5	MS	MS	MS	MS	MS	<20	MS	MS	MS	MS

All results reported in milligrams per kilogram NA = Not analyzed

bgs = Below ground surface MS = Meets standards

Exceeds 2021 NJ SRS for the Migration to Groundwater Pathway (SRSMGW)

Exceeds 2021 NJ Residential Soil Remediation Standard (RSRS)

Exceeds 2021 NJ Non-Residential Soil Remediation Standard (NRSRS)

Exceeds SRSMGW and RSRS

Total Chromium ranged from 6.9 to 102 mg/kg. Hexavalent Chromium speciation was activated on samples with Total Chromium concentrations over the Hexavalent Chromium Non-Residential Soil Cleanup Criterion of 20 mg/kg (GP-2-2024-1-1.5, GP-3-2024-1-1.5, and GP-4-2024-1-1.5). Hexavalent Chromium results are discussed in **Section 6.8**.

PFAS results are summarized in **Sections 6.9** and **6.10**. VOCs, Total EPH, Herbicides and Pesticides meet the applicable SRS.

The laboratory analytical report is provided as **Appendix C-3**.

6.6 September 12, 2024 Test Pit Soil Sampling

On September 12, 2024, Montrose oversaw the excavation of test pits by Summit Drilling Company LLC (Summit) of Bridgewater, NJ. Seven test pits (TP-2, TP-3, TP-4, TP-6, TP-9, TP-11, and TP-12) were advanced to five to ten feet bgs. Samples were analyzed as proposed in the SIWP for a combination of EPH, VOCs, SVOCs, PAHs, PCBs, Herbicides, Pesticides, Cyanide, TAL Metals, and PFAS.

^{*} Exceeds NRSRS and SRSMGW

A summary of PAHs and PCB exceedances from September 12, 2024 is presented below:

Sample ID	Depth (feet bgs)	2-MN	B[a]a	B[a]p	B[b]f	D(ah)a	I(123)p	Naph	Total PCBs
TP-2-2024-1-1.5	1-1.5	MS	1.3	1.2	MS	MS	MS	MS	MS
TP-4-2024-1-1.5	1-1.5	8.3	18	16	20	2.1	7.5	12	NA
TP-6-2024-1-1.5	1-1.5	MS	3.3	2.7	MS	MS	MS	MS	NA
TP-8-2024-1-1.5	1-1.5	MS	1.3	1.2	MS	MS	MS	MS	17*
TP-9-2024-1-1.5	1-1.5	MS	1.3	1.2	MS	MS	MS	MS	MS
TP-11-2024-1-1.5	1-1.5	MS	4.0	3.6	MS	0.59	MS	MS	NA
TP-12-2024-1-1.5	1-1.5	MS	2.8	2.5	MS	MS	MS	MS	0.44

All results reported in milligrams per kilogram (mg/kg) bgs = Below ground surface

B[a]a = Benzo[a]anthracene

B[a]p = Benzo[a]pyrene

I[123]p = Indeno[1,2,3-cd]pyrene 2-MN = 2-Methylnaphthalene

MS = Meets standards

B[b]f = Benzo[b]fluoranthene

D(ah)a = Dibenz(a,h)anthracene

Naph = Naphthalene NA = Not analyzed

Exceeds 2021 NJ SRS for the Migration to Groundwater Pathway (SRSMGW)

Exceeds 2021 NJ Residential Soil Remediation Standard (RSRS

Exceeds 2021 NJ Non-Residential Soil Remediation Standard (NRSRS)

Exceeds SRSMGW and RSRS

A summary of Metals results from September 12, 2024 is presented below:

Sample ID	Depth (feet bgs)	Hg	Sb	As	Cd	Со	Cu	Cr	Pb	Ni	Ag	Zn
TP-2-2024-1-1.5	1.0-1.5	1.1	MS	MS	MS	MS	MS	24.3	586	MS	MS	MS
TP-4-2024-1-1.5	1-1.5	1.1	MS	MS	MS	MS	MS	<20	757	MS	MS	MS
TP-6-2024-1-1.5	1-1.5	0.67	MS	MS	3.0	MS	MS	92	596	175	0.67	MS
TP-8-2024-1-1.5	1-1.5	7.4	39.4	19.1*	22.2	120	MS	804	7,330*	2,630	4.3	1,390
TP-8-2024-8-8.5	8-8.5	0.45	MS	MS	MS	MS	1,510	268	BS	133	MS	6,400
TP-9-2024-1-1.5	1-1.5	0.44	MS	MS	MS	MS	MS	<20	133	MS	MS	MS
TP-11-2024-1-1.5	1-1.5	0.24	MS	MS	MS	MS	MS	<20	MS	MS	MS	MS
TP-12-2024-1-1.5	1-1.5	0.90	MS	MS	6.4	30.3	MS	1,650	584	1,340	0.73	MS

All results reported in milligrams per kilogram

bgs = Below ground surface MS = Meets standards

NA = Not analyzed

Exceeds 2021 NJ SRS for the Migration to Groundwater Pathway (SRSMGW)

Exceeds 2021 NJ Residential Soil Remediation Standard (RSRS

Exceeds 2021 NJ Non-Residential Soil Remediation Standard (NRSRS)

Exceeds SRSMGW and RSRS

^{*} Exceeds NRSRS and SRSMGW

Many of the SRSMGW exceedances have been addressed through SPLP and development of a Site-Specific SRSMGW (SS-SRSMGW), discussed in **Section 6.10**. VOCs, Total EPH, Herbicides, and Pesticides meet the applicable SRS.

Total Chromium ranged from 7.2 to 1,650 mg/kg. Hexavalent Chromium was activated on samples TP2-2024-1.0-1.5, TP6-2024-1.0-1.5, TP8-2024-1.0-1.5, TP8-2024-8.0-8.5, and TP12-2024-1.0-1.5. Hexavalent Chromium results are discussed in **Section 6.8**.

The laboratory analytical report is provided as **Appendix C-4**.

6.7 Discussion of EPH Category 2 Ingestion/Dermal Calculator

Fractionated EPH results from samples PE-5-2.0-2.5 and TP8-2024-1.0-1.5 were input into the NJDEP 2021 EPH Category 2 Ingestion/Dermal Residential and Non-Residential Calculator. Total EPH results passed. The EPH Category 2 Ingestion/Dermal SRSs were calculated to be 25,000 mg/kg (Residential) and 35,000 mg/kg (Non-Residential). The NJDEP EPH calculation spreadsheets are provided as **Appendix F**.

6.8 Discussion of Hexavalent Chromium Results

Hexavalent Chromium results ranged from Non-Detect to 1.3 mg/kg and meet the NJDEP Non-Residential and Residential SCC of 20 mg/kg and 240 mg/kg.

6.9 Discussion of Summary of PFAS Results

PFAS SS-SRSMGWs were calculated with SPLP data. Although PFAS results meet the interim Direct Contact SRS, the following samples exceed the calculated SS-SRSMGW:

- GP-4-2024-1-1.5: PFOA of 0.02 mg/kg (exceeds the calculated SS-SRSMGW of 0.00098 mg/kg)
- GP-2-2024-1-1.5: PFOS of 0.045 mg/kg (exceeds the calculated SS-SRSMGW of 0.01 mg/kg)

6.10 Discussion of Migration to Groundwater Pathway

Montrose performed contingency analyses for SPLP PFAS, SPLP SVOCs, and SPLP TAL Metals for contaminants that exceed the default standard, as outlined in the NJDEP's *Alternative Remediation Standards Technical Guidance for Soil and Soil Leachate for the Migration to Groundwater Pathway* (May 2021, Version 1.0) The SPLP results are summarized below and were used to determine SS-SRSMGWs. As per NJDEP guidance, area-specific SRSMGWs for PFAS were calculated using the NJDEP PFAS SPLP spreadsheets. SPLP spreadsheets are provided as **Appendix E**. The *Alternative or Interim Remediation Standard and/or Screening Level Application Form* and *Remediation Standard Notification Spreadsheet* will be uploaded to NJDEP with this report.

Analyte	Default SRSMGW (mg/kg)	SS-SRSMGW (mg/kg)	Maximum concentration (mg/kg)	
Naphthalene	19	NS	12	
2-Methylnaphthalene	3.1	8.3	8.3	
Benzo[a]anthracene	0.71	18	18	
PFOA	NS	0.00031	0.02	
PFOS	NS	0.01	0.045	
PFNA	NS	0.0078	0.0078	
Lead	90	2,800	3,040	
Antimony	5.4	39.4	39.4	
Cadmium	1.9	34	34	
Cobalt	90	120	120	
Copper	910	4,450	4,450	
Mercury	0.1	7.4	7.4	
Nickel	48	2,630	2,630	
Silver	0.5	4.3	4.3	
Zinc	930	6,400	6,400	

All results reported in milligrams per kilogram

NS = No standard

Exceeds the calculated SS-SRSMGW

bgs = Below ground surface

In addition, the following COCs found at the Site are listed as immobile in the NJDEP's *Alternative Remediation Standards Technical Guidance* (Version 1.0, May 2021): Lead, Benzo[a]anthracene, and PCBs. The shallow subsurface exceedances of these COCs are not expected to impact groundwater as there is an approximately 8.5-foot buffer between the shallow sample exceedance and the groundwater table. Results of deeper soil samples collected at the Site (GP-2-2024-8.5-9, TP-8-2024-8.0-8.5, and TP-11-2024-8.0-8.5) demonstrate a clean zone within two feet of the groundwater table except for select metals (Arsenic, Mercury, and Nickel). These COCs have been addressed via a SS-SRSMGW. See **Section 7** for a discussion of groundwater results, which also support that SVOCs are not migrating to groundwater.

As stated in the NJDEP guidance for soil and soil leachate remediation standards for the migration to groundwater exposure pathway dated May 2021 "for these contaminants, if the investigator can demonstrate that a minimum two-foot clean zone is present between the contamination and the water table, no remediation may be required for the MGW pathway". The SI results had the highest Metal exceedances near the surface and deeper soil samples approximately two feet above the groundwater table met NJDEP SS-SRSMGS.

Based on the information above, the SVOC and Metal exceedances of the SRSMGW are not a concern for the immobile COCs. Further evaluation is recommended for PFOA and PFOS exceedances of the calculated SS-SRSMGW.

7.0 SITE INVESTIGATION - GROUNDWATER

7.1 September 5, 2024 Monitoring Well Installations

Montrose's NJ-licensed driller (ECDI) installed three permanent monitoring wells at direct-push locations GP-1, GP-2, and GP-3 via a hollow-stem auger drill rig. Well locations are presented on **Figure 9**.

A direct-push soil boring was first advanced at each location to evaluate lithology, field evidence of contamination, and depth to groundwater prior to deciding on well depth and construction.

Monitoring wells are screened from approximately 7 to 17 feet bgs (MW-1 and MW-3) or 5 to 15 feet bgs (MW-2). They are constructed with 2-inch diameter PVC casing and 10-slot well screen, appropriate sand pack, a bentonite/concrete seal, a concrete well pad, with locking stick-up well protectors. The wells were developed on September 6, 2024 by the well driller following installation.

Soil cuttings were containerized in 55-gallon steel drums and staged on a temporary pad until disposal could be arranged. No gross contamination (e.g., strong odor, free product) was observed during drilling or well development. Development water was pumped through activated carbon and discharged to the ground surface.

The well locations and elevations were surveyed by Vargo Associates (a licensed surveyor) on September 23, 2024. A summary of the monitoring well construction details is provided in **Table 5**. Monitoring well construction logs, NJDEP well permits, and surveyor's Form Bs are provided as **Appendix A**. Note that well records are not available from NJDEP as of the date of this report.

7.2 September 23, 2024 Groundwater Sampling

Montrose performed one round of groundwater sampling at monitoring wells MW-1, MW-2, and MW-3. The well locks had to be cut and replaced the day of the groundwater sample event. CRA will be provided with a copy of the new well key. Montrose recorded headspace vapor and groundwater depth before purging and sampling using a decontaminated submersible pump. Montrose followed NJDEP's preferred volumetric sampling method. Montrose recorded water quality groundwater readings with a flow-through cell, under Montrose's NJ lab certification # 11057. Groundwater sampling logs are provided as **Appendix D**.

Groundwater samples were placed on ice and submitted under standard chain of custody procedures to Eurofins. Field/equipment blanks and a trip blank were submitted for QA/QC purposes. Montrose analyzed groundwater samples for VOCs including TBA, SVOCs including 1-Methylnaphthalene, and TAL Metals.

Groundwater flow direction is estimated to be to the southeast, based on calculated static groundwater table elevations at the wells. If confirmed by multiple gauging events, MW-1 would be the up-gradient well and represent background groundwater conditions coming on to the Site.

Tetrachloroethene (PCE) was detected at 1.3 micrograms per liter (μ g/L), which meets the NJDEP GWQS after rounding down in accordance with NJDEP's *Guidance for the Attainment of*

Remediation Standards. No other exceedances of VOCs or SOVs were reported. A summary of Metals exceedances in groundwater is presented below:

Analyte	NJDEP GWQS for Class IIA Aquifers (μg/L)	MW-1	MW-2	MW-3
Aluminum	200	102	3,100	1,360
Arsenic	3	2	10.8	1.3
Iron	300	116	4,010	1,210
Lead	5	ND	30.1	2.2
Manganese	50	125	131	1,150
Sodium	50,000	87,900	112,000	26,900

All results reported in micrograms per liter (µg/L)

Exceeds NJ Groundwater Quality Standards (GWQS)

Note that the GWQS for Aluminum, Iron, Manganese, and Sodium do not apply at this Site. These limits are based on secondary drinking water characteristics (such as taste and odor), rather than a health risk. The shallow groundwater in the area of the Site is not used for potable purposes.

Analytical results are summarized on **Tables 6A through 6C**. The reduced laboratory analytical data deliverables are provided as **Appendix C-5**.

8.0 AOC NARRATIVE UPDATE

No exceedances of Total EPH, VOCs, Herbicides/Pesticides, or Cyanide were reported and therefore not discussed in the following sections. The majority of soil exceedances were reported in the shallow soil samples, and include 5 PAHs, 2 SVOCs, Total PCBs, and 10 Metals. The only exceedances reported from the deep soil samples were Nickel and Mercury in test pit TP-8 from 8 to 8.5 feet bgs.

In groundwater, Arsenic and Lead exceedances were reported from MW-2 only, at the former location of the Yaffa scrap metal and junk pile (AOC-6d).

Montrose has provided a brief summary of the sample results that relate to each AOC. Note, however, that some samples are meant to investigate multiple AOCs (location-specific AOCs versus site-wide AOCs). The Remedial Investigation will need to include a deeper examination of which exceedances are related to which AOCs. This is especially true of historical fill. Additional samples may be needed to tease out the PAH and Metal exceedances related to fill material versus long-term industrial use, spills, and discharges.

8.1 AOC-2: Underground Storage Tanks

One soil boring (GP-1) and one test pit (TP-1) were advanced in the suspected UST location in September 2024. No evidence of a tank or backfilled tank excavation was observed in the geophysical survey, borings, or test pits. Two soil samples were collected at boring GP-1 at depths of 6-6.5 and 8-8.5 feet bgs. Samples were analyzed for Total EPH, VOCs and TBA. COCs were not detected above laboratory reporting limits.

Monitoring well MW-1 was installed at the GP-1 location on September 5, 2024. Groundwater results did not identify any VOC exceedances and Lead was not detected above the laboratory reporting limit.

No further investigation or remediation of AOC-2 is warranted.

8.2 AOC-3: Loading and Unloading Areas

Soil samples collected from GP-2 through GP-4 and TP-2, TP-3, TP-4, TP-6, TP-8, TP-9, TP-11, and TP-12 represent this AOC and were analyzed for a combination of EPH, VOCs, SVOCS, PCBs, Herbicides/Pesticides, Cyanide, TAL Metals, and PFAS.

GP-2: Shallow soil results indicate PAHs exceeding the RSRS and SRSMGW. Total PCBs exceed NRSRS and SRSMGW. Metals exceed RSRS/NRSRS and/or SRSMGW. Mercury and Benzo(a)anthracene SRSMGW exceedances have been addressed via SPLP and the development of a SS-SRSMGW. Lead still exceeds the developed SS-SRSMGW. The shallow soil sample indicated PFOS of 0.045 mg/kg, exceeding the calculated SS-SRSMGW of 0.01 mg/kg. Deeper soil sample results meet the applicable SRS, except for Arsenic exceed SRSMGW.

- GP-3: Shallow soil PCBs results exceed NRSRS. Mercury and Lead exceed RSRS and/or SRSMGW, but these SRSMGW exceedances have been addressed via SPLP and the development of a SS-SRSMGW. Deeper soil sample results meet the applicable standards.
- GP-4: Shallow soil results indicate PCBs exceed RDCSRS and metal exceed RSRS or SRSMGW. Nickel, Mercury, Cadmium, and Lead exceed the SRSMGW, and have been addressed via SPLP and the development of a SS-SRSMGW. PFOA results exceed the calculated SS-SRSMGW. Deeper soil results meet the applicable SRS.
- TP-2: PAHs exceed RSRS or SRSMGW and Lead exceeds the RSRS and SRSMGW.
 Lead SRSMGW exceedances have been addressed via SPLP and the development of a SS-SRSMGW.
- **TP-3**: One shallow soil sample was analyzed for herbicides and pesticides. Results meet the applicable NJDEP SRS.
- TP-4: PAHs exceed RSRS and NRSRS. Limited SVOCs (2-Methylnaphthalene and Naphthalene) exceed RSRS or SRSMGW. Mercury and Lead exceed RSRS or SRSMGW. Mercury and Lead SRSMGW exceedances have been addressed via SPLP and the development of a SS-SRSMGW.
- TP-6: Shallow soil results indicate PAHs exceed NRSRS/SRSMGW and select metals exceeded the SRSMGW. Metal SRSMGW exceedances have been addressed via SPLP and the development of a SS-SRSMGW.
- TP-8: Shallow soil results indicate PAHs exceed RSRS or SRSMGW; Total PCBs exceed NRSRS; and Metals exceed RSRS/NRSRS and SRSMGW. Deeper soil sample results were limited to Metals exceeding SRSMGW, which have been addressed via SPLP and the development of a SS-SRSMGW.
- **TP-9**: Shallow soil results were limited to PAHs exceed RSRS or SRSMGW and select metals (Lead and Mercury) exceed SRSMGW. SRSMGW exceedances have been addressed via SPLP and the development of a SS-SRSMGW.
- TP-11: Shallow soil results indicate PAHs exceed RSRS/NRSRS/SRSMGW and Mercury
 exceeds the SRSMGW. Mercury and Benzo(a)anthracene SRSMGW exceedances have
 been addressed via SPLP and the development of a SS-SRSMGW. Deep soil results met
 the appliable NJDEP standards.
- TP-12: Shallow results indicate PAHs exceed NRSRS and/or SRSMGW. Metals exceeded RSRS and/or SRSMGW. Total PCBs exceeded RSRS. Metals and PAHs SRSMGW exceedances have been addressed via SPLP and the development of a SS-SRSMGW.

Further investigation and/or remediation is warranted to address COCs exceeding NJDEP SRS associated with AOC-3 (PAHs/SVOCs, Metals, and Total PCBs exceed RSRS, NRSRS and/or SRSMGW; PFAS exceeds SS-SRSMGW).

8.3 AOC-4: Storage Pads, Including Drum and/or Waste Storage

Soil samples collected from GP-2, GP-3, GP-4, TP-2, TP-4, TP-6, TP-8, TP-9, TP-11, and TP-12 represent this AOC and were analyzed for a combination of EPH, VOCs, SVOCS, PCBs, Herbicides/Pesticides, Cyanide, TAL Metals, and PFAS.

- GP-2: Shallow soil results indicated PAHs exceed RSRS and SRSMGW. Total PCBs exceeded NRSRS and SRSMGW. Metals exceed RSRS/NRSRS and/or SRSMGW. Mercury and Benzo(a)anthracene SRSMGW exceedances have been addressed via SPLP and the development of a SS-SRSMGW. Lead still exceeds the developed SS-SRSMGW. The shallow soil sample indicated PFOS of 0.045 mg/kg, exceeding the calculated SS-SRSMGW of 0.01 mg/kg. Deeper soil sample results met applicable SRS, except for Arsenic exceeding SRSMGW.
- GP-3: Shallow soil PCBs results exceeded NRSRS. Metals (Mercury and Lead) exceeded RSRS and/or SRSMGW. Mercury and Lead SRSMGW exceedances have been addressed via SPLP and the development of a SS-SRSMGW. Deeper soil sample results met applicable standards.
- GP-4: Shallow soil results indicate PCBs exceeding RDCSRS and Metals exceeding RSRS or SRSMGW. Metals (Nickel, Mercury, Cadmium, and Lead) SRSMGW exceedances have been addressed via SPLP and the development of a SS-SRSMGW. PFOA results exceeded the calculated SS-SRSMGW. Deeper soil results met applicable SRS.
- **TP-2**: Shallow soil results indicate PAHs exceeding RSRS or SRSMGW and Lead exceeding the RSRS and SRSMGW. Lead SRSMGW exceedances have been addressed via SPLP and the development of a SS-SRSMGW.
- **TP-4**: Shallow soil results indicate PAHs exceeding RSRS and NRSRS. Limited SVOCs (2-Methylnaphthalene and Naphthalene) exceed RSRS or SRSMGW. Mercury and Lead exceed RSRS or SRSMGW. Mercury and Lead SRSMGW exceedances have been addressed via SPLP and the development of a SS-SRSMGW.
- TP-8: Shallow soil results indicate PAHs exceed RSRS or SRSMGW. Total PCBs exceed NRSRS. Metals exceed RSRS/NRSRS and SRSMGW. Deeper soil sample results were limited to Metals exceeding SRSMGW, which have been addressed via SPLP and the development of a SS-SRSMGW.
- TP-9: Shallow soil results were limited to PAHs exceeding RSRS or SRSMGW and Lead and Mercury exceed SRSMGW. SRSMGW exceedances have been addressed via SPLP and the development of a SS-SRSMGW.

Further investigation and/or remediation is warranted to address COCs exceeding NJDEP SRS associated with AOC-4 (PAHs/SVOCs, Metals, Total PCBs exceed RSRS, NRSRS, and/or SRSMGW, and PFAS exceed SS-SRSMGW).

8.4 AOC-6: Waste Piles, As Defined By N.J.A.C 7:26

8.4.1 AOC-6a: Pile B – Weyhill Soil and Mixed / Unprocessed Materials

Soil samples collected from GP-2, GP-4, TP-4, TP-8, and TP-9 represent this AOC and were analyzed for a combination of EPH, VOCs, SVOCS, PCBs, Herbicides/Pesticides, Cyanide, PFAS, and TAL Metals.

- GP-2: Shallow soil results indicate PAHs exceed RSRS and SRSMGW. Total PCBs exceeded NRSRS and SRSMGW. Metals exceed RSRS/NRSRS and/or SRSMGW. Mercury and Benzo(a)anthracene SRSMGW exceedances have been addressed via SPLP and the development of a SS-SRSMGW. Lead exceeds the developed SS-SRSMGW. The shallow sample indicate PFOS at 0.045 mg/kg, exceeding the calculated SS-SRSMGW of 0.01 mg/kg. Deeper soil sample results meet applicable SRS, except for Arsenic exceeding SRSMGW.
- **GP-4**: Shallow soil results indicate PCBs exceed RDCSRS and Metals exceed RSRS or SRSMGW. Metals (Nickel, Mercury, Cadmium, and Lead) SRSMGW exceedances have been addressed via SPLP and the development of a SS-SRSMGW. PFOA results exceeded the calculated SS-SRSMGW. Deeper soil results meet applicable SRS.
- TP-4: Shallow soil results indicate PAHs exceed RSRS and NRSRS. Limited SVOCs (2-Methylnaphthalene and Naphthalene) exceed RSRS or SRSMGW. Mercury and Lead exceed RSRS or SRSMGW. Mercury and Lead SRSMGW exceedances have been addressed via SPLP and the development of a SS-SRSMGW.
- TP-8: Shallow soil results indicate PAHs exceed RSRS or SRSMGW; Total PCBs exceed NRSRS; and Metals exceed RSRS/NRSRS and SRSMGW. Deeper soil sample results were limited to Metals exceed SRSMGW, which have been addressed via SPLP and the development of a SS-SRSMGW.
- TP-9: Shallow soil results were limited to PAHs exceed RSRS or SRSMGW. Lead and Mercury exceed SRSMGW. SRSMGW exceedances have been addressed via SPLP and the development of a SS-SRSMGW

Monitoring well MW-2 was installed and sampled within the former Pile B. Groundwater results indicate Metals at the highest concentrations at this location.

Further investigation and/or remediation is warranted to address COCs exceeding NJDEP SRS associated with AOC-6a (PAHs/SVOCs, Metals, and Total PCBs exceed RSRS, NRSRS, and/or SRSMGW; PFAS exceeds SS-SRSMGW).

8.4.2 AOC-6b: Pile C – Weyhill Unprocessed Concrete, Brick, and Block

Soil samples collected from GP-3 represent this AOC and were analyzed for a combination of EPH, VOCs, SVOCS, PCBs, herbicides/pesticides, cyanide, PFAs, and TAL Metals.

Shallow soil Total PCBs results exceeded NRSRS. Mercury and Lead exceeded RSRS and/or SRSMGW. Mercury and Lead SRSMGW exceedances have been addressed via SPLP and the development of a SS-SRSMGW. Deeper soil sample results meet applicable standards.

Monitoring well MW-3 was installed and sampled within the former Pile C. Note that the VOC PCE result of 1.3 μ g/L was not presented as an exceedance. After rounding down according to the NJDEP guidance for attainment of standards, this result meets the GWQS of standard 1 μ g/L. Only Metals (Aluminum, Iron, and Manganese) exceed the GWQS. Note that the GWQS for Aluminum, Iron, Manganese, and Sodium do not apply at this Site. These limits are based on secondary drinking water characteristics (such as taste and odor), rather than a health risk. The shallow groundwater in the area of the Site is not used for potable purposes.

Further investigation and/or remediation is warranted to address COCs exceeding NJDEP SRS associated with AOC-6b (Total PCBs exceed RSRS/NRSRS and Metals exceed RSRS and/or SRSMGW).

8.4.3 AOC-6c: Pile D – Weyhill Screened Soil & Crushed Demolition Debris

Soil samples collected from TP-11 represent this AOC and were analyzed for EPH, VOCs, SVOCS, and TAL Metals.

Shallow soil results indicate PAHs exceeding RSRS, NRSRS, and SRSMGW, and Mercury exceeding the SRSMGW. Mercury and Benzo(a)anthracene SRSMGW exceedances have been addressed via SPLP and the development of a SS-SRSMGW. Deeper soil results meet NJDEP applicable standards.

Further investigation and/or remediation is warranted to address COCs exceeding NJDEP SRS associated with AOC-6c.

8.4.4 AOC-6d: Yaffa Solid Waste Beneath Pile B

Soil samples collected from GP-2 represent this AOC and were analyzed for a combination of EPH, VOCs, SVOCS, PCBs, Herbicides/Pesticides, Cyanide, PFAS, and TAL Metals.

Shallow soil results indicate PAHs exceed RSRS and SRSMGW. Total PCBs exceeded NRSRS and SRSMGW. Metals exceed RSRS/NRSRS and/or SRSMGW. Mercury and Benzo(a)anthracene SRSMGW exceedances have been addressed via SPLP and the development of a SS-SRSMGW. Lead still exceeds the developed SS-SRSMGW. The shallow sample indicate PFOS of 0.045 mg/kg, exceeds the calculated SS-SRSMGW of 0.01 mg/kg. Deeper soil sample results me et applicable SRS, except for Arsenic exceeding SRSMGW.

Further investigation and/or remediation is warranted to address COCs exceeding NJDEP SRS associated with AOC-6d (PAHs exceed RSRS, Metals exceed RSRS, NRSRS and/or SRSMGW).

8.5 AOC-7: Historical Fill

Historical fill was visually observed in the upper one to three feet of soil in borings and test pits throughout the Site. Historical fill consisted of debris, metal, plastic, concrete, brick, glass, cinders, ash, wood, and trace coal fragments. Most shallow soil samples collected across the Site indicated exceedances of some PAHs and Metals typically associated with historical fill. Elevated concentrations of these compounds (e.g., at TP-4 and TP-8) may represent specific spills/discharges or commingling of spills/discharges with historical fill. Additional soil sampling

Site Investigation Report "S YAFFA'S SONS INC" 616 Chestnut Street et al., Camden, NJ 08103 NJDEP CSRRP PI # 025881 Montrose Project # 11595-03, Task 3a

is likely needed to discern the potential sources of these COCs and whether specific exceedances can be attributed solely to historical fill.

Further investigation and/or remediation is warranted to address COCs exceeding NJDEP SRS associated with AOC-7 (PAHs and Metals).

8.6 AOC-9: Incident # 96-04-19-0840-37 - Citizen Report of Leaking Equipment

Soil samples collected from GP-4 represent this AOC and were analyzed for a combination of EPH, VOCs, SVOCS, PCBs, Herbicides/Pesticides, Cyanide, PFAS, and TAL Metals.

Shallow soil results indicate Total PCBs exceed RDCSRS and Metals exceed RSRS or SRSMGW. Metals (Nickel, Mercury, Cadmium, and Lead) exceeding SRSMGW have been addressed via SPLP and the development of a SS-SRSMGW. PFOA results exceeded the calculated SS-SRSMGW.

Deeper soil results met the applicable SRS.

Further investigation and/or remediation is warranted to address COCs exceeding NJDEP SRS associated with AOC-9 (PCBs and Lead exceed RSRS; PFOS exceeds the calculated SS-SRSMGW).

8.7 AOC-10: Incident # 23-03-27-1509-15 - Surface Petroleum Spill

Post-excavation soil results support no further remedial action for EPH at this AOC. Initial sample SS-03 with an EPH concentration of 8,000 mg/kg (scraped from the top 0.1 feet) was replaced by PE-4 (sidewall from 0 to 0.5 feet bgs). Samples SS-01 and SS-02 were excavated. The highest remaining EPH concentration is 7,600 mg/kg, or 1,400 mg/kg after removing EPH fractions suspected to be naturally occurring. The EPH calculator proposed site-specific standards of 25,000 (residential), 35,000 (non-residential), and 17,000 (free product limit).

The highest remaining Mercury concentration was at 1.8 mg/kg in post-excavation soil sample PE-5. SPLP evaluation was performed across the Site to address Mercury (also see AOC-9). A SS-SRSMGW of 7.4 mg/kg was developed for Mercury.

No further investigation or remediation of AOC-10 is warranted.

8.8 AOC-11: Former Railroad Spur

One shallow soil sample collected from TP-6 represents this AOC and was analyzed for PAHs and Metals.

Shallow soil results indicate PAHs exceed NRSRS/SRSMGW and select Metals exceeded the SRSMGW. Metal SRSMGW exceedances have been addressed via SPLP and the development of a SS-SRSMGW.

Further investigation and/or remediation is warranted to address COCs exceeding NJDEP SRS associated with AOC-11 (PAHs and Metals exceed RSRS and/or NRSRS).

8.9 AOC-13: Former On-Site Operations

8.9.1 AOC-13a: Steam Fitting Shop

One shallow soil sample collected from TP-2 represents this AOC and was analyzed for EPH. VOCs, SVOCS, PCBs, Herbicides/Pesticides, and TAL Metals. Only PAHs and Lead exceeded the RSRS and SRSMGW. These contaminants are likely attributable to historical fill. Lead SRSMGW exceedances have been addressed via SPLP and the development of a SS-SRSMGW.

No further investigation or remediation of AOC-13a is warranted as these exceedances are to be addressed under AOC-7.

8.9.2 AOC-13b: Greenhouse

One shallow soil sample collected from TP-3 represents this AOC and was analyzed for Herbicides and Pesticides. Results meet applicable NJDEP SRS.

No further investigation or remediation of AOC-13b is warranted.

8.9.3 AOC-13c: Junk Storage Areas

One shallow soil sample collected from TP-12 represents this AOC and was analyzed for EPH, VOCs, SVOCS, PCBs, Herbicides/Pesticides, and TAL Metals. Results indicate PAHs exceeding NRSRS and/or SRSMGW. Metals exceeded RSRS and/or SRSMGW. Total PCBs exceeded RSRS. Metals and PAHs exceed the SRSMGW but have been addressed via SPLP and the development of a SS-SRSMGW.

Further investigation and/or remediation is warranted at AOC-13c for PAHs, Total PCBs and Metals exceeding RSRS and/or NRSRS.

8.9.4 AOC-13d: Automotive Repair

Soil samples collected from TP-8 represent this AOC and were analyzed for a combination of EPH, VOCs, SVOCS, PCBs, Herbicides/Pesticides, and TAL metals.

Shallow soil results indicate PAHs exceed RSRS or SRSMGW. Total PCBs exceed NRSRS. Metals exceed RSRS/NRSRS and SRSMGW. Deeper soil sample exceedances were limited to Metals exceeding SRSMGW, which have been addressed via SPLP and the development of a SS-SRSMGW.

Further investigation and/or remediation is warranted at AOC-13d for COCs exceeding RSRS/NRSRS.

8.9.5 AOC-13e: Yaffa Paper Stock Warehouse

Soil samples collected from TP-2 represent this AOC and were analyzed for EPH, VOCs, SVOCS, PCBs, Herbicides/Pesticides, and TAL Metals.

Shallow soil results indicate PAHs exceed RSRS or SRSMGW and Lead exceed the RSRS and SRSMGW. These contaminants are likely attributable to historical fill. Lead SRSMGW exceedances have been addressed via SPLP and the development of a SS-SRSMGW.

No further investigation or remediation of AOC-13e is warranted as these exceedances are to be addressed under AOC-7.

8.9.6 AOC-13f: Yaffa Scrap Metal Operations

Soil samples collected from GP-2, GP-3, GP-4, TP-2, TP-4, TP-8, TP-9 represent this AOC and were analyzed for a combination of EPH, VOCs, SVOCS, PCBs, Herbicides/Pesticides, TAL Metals, and PFAS.

- GP-2: Shallow soil results indicate PAHs exceed RSRS and SRSMGW. Total PCBs exceeded NRSRS and SRSMGW. Metals exceed RSRS/NRSRS and/or SRSMGW. Mercury and Benzo(a)anthracene SRSMGW exceedances have been addressed via SPLP and the development of a SS-SRSMGW. Lead still exceeds the developed SS-SRSMGW. The shallow sample indicate PFOS of 0.045 mg/kg, exceed the calculated SS-SRSMGW of 0.01 mg/kg. Deeper soil sample results met applicable SRS, except for Arsenic exceeding SRSMGW.
- GP-3: Shallow soil indicate Total PCBs results exceeded NRSRS. Mercury and Lead exceeded RSRS and/or SRSMGW. Mercury and Lead SRSMGW exceedances have been addressed via SPLP and the development of a SS-SRSMGW. Deeper soil sample results met applicable standards.
- GP-4: Shallow soil results indicate Total PCBs exceed RDCSRS and Metals exceed RSRS or SRSMGW. Metals (Nickel, Mercury, Cadmium, and Lead) SRSMGW exceedances have been addressed via SPLP and the development of a SS-SRSMGW. PFOA results exceeded the calculated SS-SRSMGW. Deeper soil results met applicable SRS
- TP-2: Shallow soil results indicate PAHs exceed RSRS or SRSMGW and Lead exceeds
 the RSRS and SRSMGW. Lead SRSMGW exceedances have been addressed via SPLP
 and the development of a SS-SRSMGW.
- TP-4: Shallow soil results indicate PAHs exceed RSRS and NRSRS. Limited SVOCs (2-Methylnaphthalene and Naphthalene) exceed RSRS or SRSMGW. Mercury and Lead exceed the RSRS or SRSMGW. Mercury and Lead SRSMGW exceedances have been addressed via SPLP and the development of a SS-SRSMGW.
- TP-8: Shallow soil results indicate PAHs exceed RSRS or SRSMGW; Total PCBs exceed NRSRS; and Metals exceed RSRS/NRSRS and SRSMGW. Deeper soil sample results were limited to Metals exceed SRSMGW, which have been addressed via SPLP and the development of a SS-SRSMGW.
- **TP-9:** Shallow soil results were limited to PAHs exceeding RSRS or SRSMGW. Mercury and Lead exceed SRSMGW. SRSMGW exceedances have been addressed via SPLP and the development of a SS-SRSMGW.

Further investigation and/or remediation is warranted at AOC-13f for COCs exceeding RSRS/NRSRS.

8.9.7 AOC-13g: Weyhill Soil/Debris Stockpiling

Soil samples collected from GP-2, GP-3, GP-4, TP-2, TP-4, TP-8, TP-9, TP-11, and TP-12 represent this AOC and were analyzed for a combination of EPH, VOCs, SVOCS, PCBs, Herbicides/Pesticides, and TAL Metals. Soil exceedances were found in Metals, SVOCs, and Total PCBs.

- GP-2: Shallow soil results indicate PAHs exceed RSRS and SRSMGW. Total PCBs exceeded NRSRS and SRSMGW. Metals exceed RSRS/NRSRS and/or SRSMGW. Mercury and Benzo(a)anthracene SRSMGW exceedances have been addressed via SPLP and the development of a SS-SRSMGW. Lead exceeds the developed SS-SRSMGW. The shallow sample indicate PFOS of 0.045 mg/kg, exceeding the calculated SS-SRSMGW of 0.01 mg/kg. Deeper soil sample results met applicable SRS, except for Arsenic exceeding SRSMGW.
- GP-3: Shallow soil indicate Total PCBs results exceeded NRSRS. Mercury and Lead exceeded RSRS and/or SRSMGW. Mercury and Lead SRSMGW exceedances have been addressed via SPLP and the development of a SS-SRSMGW. Deeper soil sample results met applicable standards.
- GP-4: Shallow soil results indicate Total PCBs exceed RDCSRS and Metals exceed RSRS or SRSMGW. Metals (Nickel, Mercury, Cadmium, and Lead) SRSMGW exceedances have been addressed via SPLP and the development of a SS-SRSMGW. PFOA results exceeded the calculated SS-SRSMGW. Deeper soil results met applicable SRS.
- TP-2: Shallow soil results indicate PAHs exceed RSRS or SRSMGW and Lead exceeded
 the RSRS and SRSMGW. Lead SRSMGW exceedances have been addressed via SPLP
 and the development of a SS-SRSMGW.
- TP-4: Shallow soil results indicate PAHs exceed RSRS and NRSRS. Limited SVOCs (2-Methylnaphthalene and Naphthalene) exceed RSRS or SRSMGW. Mercury and Lead exceed RSRS or SRSMGW. Mercury and Lead SRSMGW exceedances have been addressed via SPLP and the development of a SS-SRSMGW.
- TP-8: Shallow soil results indicate PAHs exceed RSRS or SRSMGW; Total PCBs exceed NRSRS; and Metals exceed RSRS/NRSRS and SRSMGW. Deeper soil sample results were limited to Metals exceed SRSMGW which have been addressed via SPLP and the development of a SS-SRSMGW.
- TP-9: Shallow soil results were limited to PAHs exceed RSRS or SRSMGW and Lead and Mercury exceed SRSMGW. SRSMGW exceedances have been addressed via SPLP and the development of a SS-SRSMGW.

- **TP-11**: Shallow soil results indicate PAHs exceed RSRS/NRSRS/SRSMGW and Mercury exceed the SRSMGW. Mercury and Benzo(a)anthracene SRSMGW exceedances have been addressed via SPLP and the development of a SS-SRSMGW. Deep soil results met the appliable NJDEP standards.
- TP-12: Shallow results indicate PAHs exceed NRSRS and/or SRSMGW. Metals exceeded RSRS and/or SRSMGW. Total PCBs exceeded RSRS. Metal and PAH SRSMGW exceedances have been addressed via SPLP and the development of a SS-SRSMGW.

Further investigation and/or remediation is warranted for AOC-13g (Total PCBs, PAHs, and Metals exceed RSRS/NRSRS).

9.0 RECEPTOR EVALUATION

As required by the *Technical Requirements for Site Remediation*, a receptor evaluation was performed for the Site. A receptor is defined as any human or ecological component that is or may be affected by contaminants of concern. This evaluation was performed to identify potential impacts to human and ecological receptors from potentially contaminated AOCs. Montrose submitted an *Initial Receptor Evaluation Form* to NJDEP via email on August 19, 2024 (**Appendix H**).

9.1 Land Use

The Site itself was recently used as a vacant commercial land and is expected to be redeveloped. The future use of the property is unknown at this time, but anticipated to be residential.

As part of the requirements for a Receptor Evaluation, the NJDEP requires PRCRs to identify any residences, schools, child-care centers, parks, playgrounds, or other recreation areas within 200 feet of the Site boundary as per N.J.A.C 7:26E1:13. Many residential properties fall within 200 feet of the Site (**Figure 2**). No child care centers, parks, playgrounds, or other recreation areas located within 200 feet of the Site boundary.

Impacts to soil appear to be limited to the upper three feet of soil within the boundaries of the Site. No further evaluation of land use is required.

Results of the land use evaluation are summarized in Table 3 and Figure 10.

9.2 Groundwater

As per N.J.A.C 7:76E-1.14, the PRCR shall conduct a receptor evaluation of groundwater when any contaminant in groundwater exceeding any applicable NJDEP GWQS. Direct-push borings and monitoring wells confirmed the depth to groundwater was approximately 9 to 10 feet bgs across the Site.

Arsenic and Lead exceedances were reported from MW-2 only in one sampling event. Additional sampling is recommended to confirm these exceedances, but it appears they are delineated by MW-1 (up-gradient to the northwest) and MW-3 (cross-gradient to the southwest).

No evidence of potentially potable wells was observed during field investigations. Only one structure (an occupied residence) remains on Block 331 and it is connected to municipal water. Water shut-off valves and hydrants are located throughout the neighborhood, indicating that municipal water is provided to the structures in the area. It is unlikely that the shallow aquifer is being used for potable or irrigation purposes in this area.

Montrose performed an initial potable well search as part of the SI, and no potentially potable wells are documented in NJDEP's records within 500 feet of MW-2. There are residential properties within 500 feet down-gradient of MW-2. If Arsenic and Lead groundwater exceedances are confirmed during the RI phase, Montrose recommends conducting a door-to-door well search to confirm that there are no undocumented potentially potable wells in this area.

9.3 Vapor Intrusion

As per N.J.A.C 7:76E-1.15, the PRCR shall conduct a receptor evaluation of the vapor intrusion pathway when VOCs are detected in groundwater at a concentration greater than the vapor intrusion groundwater screening levels (VISLs) or when free product is identified. Groundwater investigation results meet the VISLs and free product has not been identified at this Site, therefore, a vapor intrusion investigation is not required.

9.4 Ecological Evaluation

A desktop Ecological Evaluation (EE) was conducted to determine if any environmentally sensitive natural resources (ENSR) other than groundwater are present at the Site, adjacent to the Site, or; may be, have been, or are impacted by contamination from the Site. The ecological evaluation was performed in general accordance with the NJDEP *Ecological Evaluation Technical Guidance*.

The NJDEP requires that the EE must be updated with new information to evaluate the potential impacts to sensitive populations or ecological receptors during the later phases of the investigation. The EE is conducted to examine the Site for the co-occurrence of the following:

- The presence of Contaminants of Potential Ecological Concern (COPEC) at the Site.
- The presence of ENSRs (other than groundwater) on, adjacent to, or potentially impacted by the Site; and
- The presence for potential contaminant migration pathways (historical or current) that transport or transmit a COPEC to and ENSR.

If a co-occurrence of a COPEC, ENSR, and a migration pathway (historical or current) are identified, then a remedial investigation of ecological receptors would be required as per N.J.A.C 7:26E-4.8.

9.4.1 Presence of Contaminants of Potential Ecological Concern (COPECs)

COCs highlighted below exceeded an Ecological Screening Criterion (ESC) in soil.

Compound of Concern	Most Stringent Ecological Screening Criterion in Soil (mg/kg)	Maximum Concentration Present (mg/kg)
Benzo(a)anthracene	5.21	18
Benzo(a)pyrene	1.52	16
Benzo(b)fluoranthene	59.8	20
Dibenz(a,h)anthracene	18.4	2.1
Indeno[1,2,3-cd]pyrene	0.200	7.5
Naphthalene	0.16	12
Total PCBs	0.07	17
Antimony	3	39.4
Arsenic	6	19.1
Cadmium	0.6	22.2
Cobalt	13	120
Copper	28	1,510
Lead	0.0537	7,330

Nickel	38	2,630
Silver	4.2	4.3
Zinc	46	6,400
Mercury	0.00051	7.4

9.4.2 Identification of Environmental Sensitive Natural Resources (ENSRs)

The Site is located in an urban setting, surrounded by developed properties and roads. No environmentally sensitive areas of ecological importance, surface water bodies, or suspected wetlands are located on the property. The entire property is covered with a four-inch layer of clean stone limiting direct contact with soils. There are no known ESNRs present on, or immediately adjacent to, the Site.

9.4.3 Presence of Contaminant Migration Pathways from a COPEC to an ENSR

There are no known migration pathways of a COPEC to an ENSR. As described in the following sections, there are no ESNRs on or adjacent to the Site. Therefore, no additional investigation or evaluation of ESNRs is required.

Since one or more of the three items above do not exist, no further EE or investigation is required.

10.0 DATA USABILITY

This section discusses the Quality Assurance (QA) and Quality Control (QC) measures applied to the SI sampling activities on May 5, 2023, May 13, 2024, September 5, 2024, September 12, 2024, and September 23, 2024.

10.1 Quality Assurance

Summary tables of analytical methods and QA indicators pursuant to N.J.A.C. 7:26E-2.1 that were employed during the soil sampling events conducted on May 5, 2023, May 13, 2024, September 5, 2024, and September 12, 2024 are presented below. The sample locations are illustrated on **Figure 4** through **Figure 9** and results are summarized in **Table 1** through **Table 4D**.

Soil Analytical Summary - May 5, 2023, SDG 460-279709

Analysis	EPA Method	Samples	Samples ervative Type			Bottle Vol.	Hold Time
TCL VOA + 15 TICS	8260D	4 Conditional 25% analyzed	0	1-MeOH 2-Water	Glass	40 ml Vial	48 hour prep/14 Day analysis
EPH Category 2	NJDEP EPH	4					14 Days
TCL SVOA + 15 TICS	8270E	4 Conditional	0	None	Class	9 01100	14 Day extraction/ 40
PCB	8082A	25%	0	None	Glass	8 ounce	Day analysis
TAL Metals	6020B/7471B	analyzed					180 Days/ 28 Days (Hg)

Soil Analytical Summary - May 13, 2024, SDG 460-304060

Analysis	EPA Method	Samples	QC Samples	Pres- ervative	Bottle Type	Bottle Vol.	Hold Time
EPH Category 2	NJDEP EPH	_	0	Nama	Class	0	14 Days
Mercury	7471B	5	U	None	Glass	8 ounce	28 Days
SPLP Mercury	1312/7470A						28 Days

Soil Analytical Summary - September 5, 2024, SDG 460-310859

Analysis	EPA Method	Samples	QC Samples	Pres- ervative	Bottle Type	Bottle Vol.	Hold Time			
TCL VOA + 15 TICS + TBA	8260D	8	0	1-MeOH 2-Water	Glass	40 ml Vial	48 hour prep/14 Day analysis			
EPH Category 1 Conditional naphthalene + 2- methylnaphthalene	NJDEP EPH	2	0	None	Glass	2 ounce	14 Days (EPH)/14 Day extraction/ 40 Day analysis			
EPH Category 2	NJDEP EPH/82 70E					2 ounce	14 Days			
TCL SVOA + 15 TICS	8270E									
РСВ	8082A						14 Day extraction/ 40 Day			
Herbicides	8151A	6							40	analysis
Pesticides	8081B					16 ounce				
Cyanide	9012B						28 Days			
TAL Metals	6020B/ 7471B		0	None	Glass		180 Days/ 28 Days (Hg)			
PFAS	1633						28 Days			
SPLP PFAS	1312/16 33	3				8 ounce	28 day leach/28 Day to analysis			
SPLP VOA	1312/82 60D					2 - 25 Gram encore	48 hours/14 day leach/14 Day to analysis			
SPLP SVOA	1312/82 70E	3 Conditional				8 ounce	14 day leach 14 day extraction 40 day analysis			
SPLP Metals	1312/60 20B/74 70A					o ounce	180 day 28 day (Hg)			

Soil Analytical Summary - September 12, 2024, SDG 460-311355

Analysis	EPA Method	Samples	QC Samples	Pres- ervative	Bottle Type	Bottle Vol.	Hold Time
TCL VOA + 15 TICS	8260D	8		1-MeOH 2-Water	Glass	40 ml Vial	48 hour prep/14 Day analysis
EPH Category 2	NJDEP EPH/8270E	8				2 ounce	14 Days
TCL SVOA + 15 TICS	8270E	8					
SVOA PAH	8270E	1					14 Day extraction/ 40
РСВ	8082A	5				16 ounce	Day analysis
Herbicides	8151A	5					
Pesticides	8081B	5					
TAL Metals	6020B/7471B	9	0				180 Days/ 28 Days (Hg)
Hexavalent Chromium	7196	6 Conditional		None	Glass	4 ounce	28 Days
SPLP VOA	1312/8260D					4 ounce 2 - 25 Gram encore	48 hours/14 day leach/14 Day to analysis
SPLP SVOA	1312/8270E	6 Conditional				8 ounce	14 day leach 14 day extraction 40 day analysis
SPLP Metals	1312/6020B/ 7470A						180 day 28 day (Hg)

Summary tables of analytical methods and QA indicators pursuant to N.J.A.C. 7:26E-2.1 that were employed during the groundwater sampling event conducted on September 23, 2024 is presented below. The sample locations are illustrated on **Figure 9** and results are summarized in **Table 6A through Table 6C**.

Groundwater Analytical Summary - September 23, 2024

Analysis	EPA Method	Samples	· ervative		Bottle Type	Bottle Vol.	Hold Time
TCL VOA + TBA + 15 + SIMS	8260D	5	1-Equipment Blank 1-Trip Blank	HCL	Glass	3-40 ml Vial	14 Days
TCL SVOA + 15 + 1- methylnaphthalene + SIMs	8270E	5	0	None	Amber Glass	3-250 ml	28 Days
TAL Metals	6020B/ 7470A	5	0	HNO3	Plastic	250 ml	180 Days/ 28 Days (Hg)

10.2 Analytical Data Quality Review

Reduced Laboratory Data Deliverable Packages for all soil and groundwater samples collected during the SI are included in **Appendices C-1 through C-5**. As required by Appendix A of 7:26E, the Reduced Laboratory Data Deliverable Packages contain an Analytical Results Summary for each sample, including units, Practical Quantitation Limits/Method Detection Limits (MDLs) and results, as well as separate tables for TICs. Review of the laboratory QC information shows that QC indicators including sample holding times, ability to achieve MDLs, precision, and accuracy criteria for the analytical methods, and other indicators of data quality are within acceptable ranges, except for a SPLP SVOCs sample collected on September 12, 2024.

The analytical data meet the data quality objectives for the Site. Analytical sampling procedures met NJDEP Field Manual sampling protocols. Proper sampling, preservation, handling and shipping of samples was performed unless stated above. Analytical laboratories performing the work were certified by the State of New Jersey for the analyses performed. Internal and external laboratory QA and QC data were performed properly.

At times, the laboratory qualified data due to recoveries from laboratory control samples and duplicate samples and/or matrix spike and matrix spike duplicate results. Though some data were qualified, none of the data required to be rejected as a result of the qualifications. A review by the LSRP has deemed that the analytical data reported meets the QC objectives and the data is acceptable, however a technical deviation of the SPLP SVOC sample out of hold that did not meet regulatory requirements is discussed in **Section 11**.

Review of the laboratory QC information for the May 5, 2023, soil sampling event resulted in the following comments:

Volatiles

All QC results are within acceptable ranges.

Semi-Volatiles

- The initial and continuing calibration verification was outside of the method criteria for benzaldehyde. The associated samples, SS-01-0-1, SS-02-0-1, SS-01-1-6, and SS-03-0-1 results could be biased low.
- The LCS/LCSD recoveries (54/66%) for 3,3-dichlorobenzidine were outside of the laboratory control limits of 70-130%. The associated batched sample, SS-01-01 reporting limits could be biased low.
- The surrogate recovery (13%) for 2-fluorophenol was outside of the laboratory control limits of 70-130%. The associated sample SS-0-0-1 is considered biased low for the acid compounds.

Extractable Petroleum Hydrocarbons

- The surrogate recoveries for samples SS-01-0-1, SS-02-0-1, and SS-01-1-6 were outside
 of the method control limits. The surrogates were diluted out due to high sample
 concentrations and was not recoverable.
- The LCS/LCSD RPDs for C12-C16 Aliphatics, C16-C21 Aliphatics, C21-C40 aliphatics, and C9-C12 Aliphatics exceeded the laboratory limit. The associated batched samples include SS-01-0-1, SS-02-0-1, SS-01-1-6, and SS-03-0-1 sample results may be biased.

Review of the laboratory QC information for the May 13, 2024 soil sampling event resulted in the following comments:

Extractable Petroleum Hydrocarbons

The surrogate recoveries for sample PE5-2.0-2.5 1-chlorooctadecane and o-terphenyl
were outside of the method control limits. Based on the high surrogate recovery of 1chlorooctadecane indicates that C16-C21 aliphatics and C-21-C40 aliphatics could be
biased high. The surrogate o-terphenyl was diluted out due to high sample concentrations
and was not recoverable.

Metals

 The MS/MSD recoveries exceedances for total mercury were documented in the case narrative, but the MS/MSD data was not included in the data package for total mercury.
 The parent sample was not project specific and would not alter the bias of the sample results.

Review of the laboratory QC information for the September 5, 2024 soil sampling event resulted in the following comments:

Volatiles

- The LCS/LCSD recoveries (131/135%) for methyl acetate were outside of the laboratory control limits of 57-120%. The batched samples included all project samples. All sample results except for GP-4-2024-10-10.5 were non-detect, therefore no qualification necessary. The sample results for GP-4-2024-10-10.5 could be biased high.
- The LCSD recoveries (127%) for chloroethane was outside of the laboratory control limits of 60-123%. The batched samples included all project samples. All sample results were non-detect, therefore no qualification necessary.
- The continuing calibration verification was outside of the method criteria for bromoform (high), and dichlorodifluoromethane (low). Samples GP-3-2024-1-1.5, GP-3-2024-9.5-10, GP-1-2024-6-6.5, GP-1-2024-8-8.5, GP-2-2024-1-1.5, GP-2-2024-8.5-9, GP-4-2024-1-1.5, and GP-4-2024-10-10.5 were non-detect, therefore no qualification necessary.

Semi-Volatiles

 The LCS/LCSD recoveries (152/135%) for Hexachlorocyclopentadiene, LCS recovery (125%) for 2,4-dimethylphenol, and LCS recovery (125%) for Benzo(g,h,i)perylene were outside of the laboratory control limits. The batched samples included all project samples.

All sample results were non-detect, except for samples GP-3-2024-1-1.5, and GP-4-2024-1-1.5. Samples GP-3-2024-1-1.5, and GP-4-2024-1-1.5 could be biased high.

- The LCS/LCSD RPD for 4-Chloroaniline, Benzidine, and 3,3'Dichlorobenzidine was outside of the laboratory control limits. All sample results were non-detect, therefore no qualification necessary.
- The initial and continuing calibration verification was outside of the method criteria for benzaldehyde. The associated samples, GP-3-2024-1-1.5, GP-3-2024-9.5-10, GP-2-2024-1-1.5, GP-2-2024-8.5-9, GP-4-2024-1-1.5, and GP-4-2024-10-10.5 were non-detect, reporting limits could be biased low.
- The MS/MSD recoveries was outside of the laboratory control limits for multiple compounds. The parent sample was not project specific, and therefore no qualifications necessary.
- The MS/MSD RPDs exceeded the upper laboratory control limits for Hexachlorobutadiene, 4-Chloroaniline, and Benzidine. The associated batched samples include GP-3-2024-1-1.5, GP-3-2024-9.5-10, GP-2-2024-1-1.5, GP-2-2024-8.5-9, GP-4-2024-1-1.5, and GP-4-2024-10-10.5 sample results may be biased.
- The continuing calibration verification was outside of the method criteria for Benzaldehyde The associated samples, GP-3-2024-1-1.5, GP-3-2024-9.5-10, GP-2-2024-1-1.5, GP-2-2024-8.5-9, GP-4-2024-1-1.5, and GP-4-2024-10-10.5 reporting limits could be biased low.

Pesticides

• The surrogate recoveries for samples GP-3-2024-1-1.5, GP3-2024-9.5-10, GP-2-2024-1-1.5, GP-2-2024-8.5-9, GP-4-2024-1-1.5, and GP-4-2024-10-10.5 for Decachlorobiphenyl were outside of the laboratory control limits on both columns. All sample results except for GP-4-2024-1-1.5 were non-detect, therefore no qualification necessary. The sample results for GP-4-2024-1-1.5 could be biased high.

PCBs

• The surrogate recoveries for sample GP-3-2024-9.5-10, GP-2-2024-1-1.5, and GP-2-2024-8.5-9 for Decachlorobiphenyl were outside of the laboratory control limits. All sample results except for GP-2-2024-1-1.5 were non-detect, therefore no qualification necessary. The sample results for GP-2-2024-1-1.5 could be biased high.

Herbicides

• The MS/MSD recoveries exceeded for 2,4-D. The parent sample was not project specific.

Extractable Petroleum Hydrocarbons

• The MS/MSD recoveries exceeded for C12-C16 aliphatics, and C9-C12 aliphatics. The parent sample was not project specific.

Metals

- The MS/MSD recoveries and duplicate RPDs exceeded the laboratory control limits for multiple compounds. The parent sample was not project specific.
- Nickel was detected in the SPLP leachate blank. The sample concentrations were less than five times the leachate blank concentration, and the nickel concentration could be laboratory contamination.
- The MS/MSD (102%/103%) recoveries exceedances for cyanide exceeded the laboratory control limits of 29-100%. The sample recovery is still within reasonable limits. The associated batched samples include GP-3-2024-1-1.5, GP-3-2024-9.5-10, GP-2-2024-1-1.5, GP-2-2024-8.5-9, GP-4-2024-1-1.5, and GP-4-2024-10-10.5

PFAS

- The SPLP LLCS recovery (151%) for 4:2 FTS was outside of the laboratory control limits.
 The batched samples included all project samples. All sample results were non-detect, therefore no qualification necessary.
- The MS/MSD recoveries and duplicate RPDs exceeded the laboratory control limits for PFOS. The parent sample was not project specific.
- SPLP PFOS was detected in the leachate blank. The batched sample concentrations were greater than five times the leachate blank concentration, and no qualification necessary.

Review of the laboratory QC information for the September 12, 2024 soil sampling event resulted in the following comments:

Volatiles

- The continuing calibration verification was outside of the method criteria for bromoform (high). All associated samples were non-detect, therefore no qualifications necessary. The continuing calibration verification was outside of the method criteria for dichlorodifluoromethane (low). Samples TP4-2024-1.0-1.5, TP3-2024-1.0-1.5, TP8-2024-1.0-1.5, TP8-2024-1.0-1.5, TP9-20024-1.0-1.5, TP11-2024-1.0-1.5, TP11-2024-1.0-1.5, TP11-2024-1.0-1.5, and TP2-2024-1.0-1.5 were non-detect, but reporting limits may be biased low.
- The LCS/LCSD recoveries (139/139%) for bromoform and the LCS recoveries for chloroethane (124%) were outside of the laboratory control limits. Samples TP4-2024-1.0-1.5, TP3-2024-1.0-1.5, TP8-2024-1.0-1.5, TP8-2024-8.0-8.5, TP6-2024-1.0-1.5, TP9-20024-1.0-1.5, TP11-2024-1.0-1.5, TP11-2024-8.0-8.5, TP12-2024-1.0-1.5, and TP2-2024-1.0-1.5 were non-detect, therefore no qualification necessary.

Semi-Volatiles

 The LCS/LCSD recoveries (158/160%) for Hexachlorocyclopentadiene were outside of the laboratory control limits. All sample results were non-detect, therefore no qualification necessary.

- The MS/MSD recoveries and the RPD limits were outside of the laboratory control limits for multiple compounds. The parent sample was not project specific, and therefore no qualifications necessary.
- The continuing calibration verification was outside of the method criteria for Benzaldehyde and Benzidine. The associated samples, TP4-2024-1.0-1.5, TP3-2024-1.0-1.5, TP8-2024-1.0-1.5, TP8-2024-8.0-8.5, TP6-2024-1.0-1.5, TP9-2024-1.0-1.5, TP11-2024-1.0-1.5, TP11-2.24-8.0-8.5, TP12-2024-1.0-1.5, and TP2-2024-1.0-1.5. The sample reporting limits could be biased low.
- SPLP of SVOCs on sample TP4-2024-1.0-1.5 was run out of hold time. The data is flagged
 as does not meet regulatory requirements. A technical deviation of the data is further
 discussed in Section 11.

Pesticides

- The surrogate recoveries for samples TP2-2024-1.0-1.5, TP3-2024-1-1.5, TP8-2024-1.0-1.5, TP9-2024-1.0-1.5, and TP12-2024-1.0-1.5 for Decachlorobiphenyl were outside of the laboratory control limits on both columns. All sample results were non-detect, therefore no qualification necessary.
- The RPD column between TP3-2024-1.0-1.5 were greater than 40%. The lower of the two
 column concentrations was reported and the sample concentrations is considered
 estimated.

PCBs

• The surrogate recovery for samples TP8-2024-1.0-1.5 was outside of the method control limits. The surrogates were diluted out due to high sample concentrations and was not recoverable.

Herbicides

- The surrogate recoveries for sample TP12-2024-1.0-1.5 for Dichlorophenylacetic acid was outside of the laboratory control limits (high). All sample results were non-detect, therefore no qualification necessary.
- The continuing calibration verification and the closing continuing calibration verification for multiple compounds were outside of the method. All sample results were non-detect, therefore no additional qualifications necessary.

Extractable Petroleum Hydrocarbons

 Surrogate o-Terphenyl (176%) was outside of the laboratory control limits for sample TP2-2024-1.0-1.5, and o-Terphenyl and 1-Chlorooctadecane for sample TP8-2024-1.0-1.5.
 Sample was not re-extracted due to obvious matrix interferences, and sample results are considered estimated.

Metals

 Metals MS/MSD The MS/MSD recoveries and duplicate RPDs exceeded the laboratory control limits for multiple compounds. The parent sample was not project specific.

Review of the laboratory QC information for the September 23, 2024 groundwater sampling event resulted in the following comments:

Volatiles

 The continuing calibration verification was outside of the method criteria for chloromethane, and dichlorodifluoromethane both low. The reporting limits for dichlorodifluoromethane and chloromethane could be biased low.

Semi-Volatiles

- The LCS recovery for 2-Chlorophenol, 2-Methylphenol, and 3,3'Dichlorobenzidine and LCSD recovery for 2-Chlorophenol, 2-Methylphenol, 2-Methylphenol, and 3,3'Dichlorobenzidine were outside of the laboratory control limits. The sample reporting limits could be biased low.
- The continuing calibration verification was outside of the method criteria for Benzaldehyde (low). The reporting limits for Benzaldehyde could be biased low.
- The surrogate recoveries for sample MW-2, and EB-240923 for 2,4,6-Tribromophenol was outside of the laboratory control limits (high). All sample results were non-detect, therefore no qualification necessary.

Metals

All QC results are within acceptable ranges.

11.0 VARIANCE AND DEVIATIONS

N.J.A.C. 7:26E-1.6(b)4i and ii require that each remedial phase report present a list of variances from the regulations and deviations from technical guidance.

11.1 Variances

As described in the *Brownfield and Contaminated Site Remediation Act* of 2012 (N.J.S.A. 58:10B-2b) a person performing a remediation may deviate from the strict adherence to the regulations, in a variance procedure or by another method prescribed by the department, if that person can demonstrate that the deviation and the resulting remediation would be as protective of human health, safety, and the environment, as appropriate, as the department's regulations and that the health risk standards established in subsection d. of section 35 of P.L.1993, c.139 (C.58:10B-12) and any applicable environmental standards would be met. Factors to be considered in determining if the deviation should be allowed are whether the alternative method:

- 1. has been either used successfully or approved by the department in writing or similar situations;
- 2. reflects current technology as documented in peer-reviewed professional journals;
- 3. can be expected to achieve the same or substantially the same results or objectives as the method which it is to replace; and
- 4. Furthers the attainment of the goals of the specific remedial phase for which it is used.

No variances from the applicable regulations were identified for the purposes of this assessment.

11.2 Deviations

The Site Remediation Reform Act ("SRRA") at N.J.S.A. 58:10C-14c(3) and the Administrative Requirements for the Remediation of Contaminated Sites ("ARRCS") at N.J.A.C. 7:26C-6.2(c)3 require environmental professionals to apply NJDEP technical guidelines (i.e., guidance) in regard to site remediation.

Additionally, as provided in both N.J.S.A. 58:10C-14c(4) and N.J.A.C. 7:26C-6.2(c)4, if there is no specific NJDEP requirement and guidelines issued by NJDEP are not considered appropriate or necessary in the professional judgment of the environmental professional, additional guidelines may be used to make remedial decisions providing the rationale for such use is set forth in the relevant submittal by the environmental professional. Additional guidelines would include (in order of preference, as set forth in SRRA):

- 1. Relevant guidance from the US Environmental Protection Agency or other states; and
- 2. Other relevant, applicable, and appropriate methods and practices that ensure the protection of the public health and safety, and of the environment.

If the environmental professional does not consider NJDEP guidance appropriate or necessary, the environmental professional must explain why and provide adequate justification to document that the decisions made are still protective of public health, safety and the environment pursuant

Site Investigation Report "S YAFFA'S SONS INC" 616 Chestnut Street et al., Camden, NJ 08103 NJDEP CSRRP PI # 025881 Montrose Project # 11595-03, Task 3a

to SRRA. The complexity of the explanation will be relative to the complexity of site conditions, and whether Department guidelines were available. environmental professionals should exercise their professional judgment regarding the level of detail needed to adequately justify decisions that were made.

The following deviation from the technical guidance were identified for the purposes of this assessment:

• Due to a laboratory error, SPLP SVOC (TP4-2024-1.0-1.5, collected on September 12, 2024) was analyzed out of hold time. Montrose requested the analysis within the specified 14-day holding time, however the sample was not analyzed until October 3, 2024 which is eight days out of 14-day hold time. See **Section 11** for further discussion. This is a deviation from N.J.A.C. 7:26E-2.2 Quality Assurance Project Plan. Montrose utilized professional judgment and accepted the data from this out-of-hold sample to develop the SSSRSMGW for SVOCs with the NJDEP SPLP spreadsheet calculator.

12.0 DISCUSSION

Montrose performed this SI on behalf of CRA in conformance with the scope and limitations of N.J.A.C. 7:26E 3.3 through 3.5 and the NJDEP's *Site Investigation of Soils Technical Guidance* (March 2015) and NJDEP's *Site Investigation Groundwater Technical Guidance* (April 2012) for the Entire Site identified as "S Yaffa's Sons Inc", NJDEP CSRRP PI # 025881.

Four soil borings, eight test pits, and three permanent monitoring wells were installed at the Site in September 2024 to investigate nine AOCs identified in Montrose's August 14, 2024 PAR. Historical fill was observed in the upper one to three feet across the Site. Soil exceedances were generally limited to shallow soil samples collected at 1-1.5 feet bgs. SI sampling throughout the Site conducted in September 2024 reported EPH results ranging from non-detect to 4,000 mg/kg. A few VOCs were detected above laboratory Reporting Limits (MTBE, TBA, TCE, etc.), but no VOC exceedances were reported in soil. A total of seven shallow soil samples reported PAHs exceeding a NJDEP SRS. PCBs exceeded NJDEP SRS in several shallow soil samples. All soil PFAS meet the interim Direct Contact SRS. SPLP was performed to calculate a SS-SRSMGW). Two samples exceeded the calculated SS-SRSMGW.

The groundwater table was measured at approximately 9 to 10 feet bgs in monitoring wells installed at the Site. Groundwater flow direction is estimated to be to the southeast, based on calculated static groundwater table elevations at the wells. If confirmed by multiple gauging events, MW-1 would be the up-gradient well and represent background groundwater conditions coming on to the Site. No exceedances were reported in MW-1.

Groundwater samples (analyzed for VOCs, SVOCs, and Metals only) reported exceedances of Metals including Aluminum, Arsenic, Iron, Lead, Manganese, and Sodium. Note that the GWQS for Aluminum, Iron, Manganese, and Sodium do not apply at this Site. These limits are based on secondary drinking water characteristics (such as taste and odor), rather than a health risk. The shallow groundwater around the Site is unlikely to be used for potable purposes. Arsenic and Lead exceedances were only reported from MW-2 in the one sampling event. This well is located at the former location of the Yaffa scrap metal and junk pile and Weyhill's Pile B (AOC-6a and AOC-6d). Additional sampling is recommended to confirm these exceedances, but it appears they are delineated by MW-1 (up-gradient to the northwest) and MW-3 (cross-gradient to the southwest).

No potentially potable wells were identified during the initial potable well search (see **Section 9.2**).

Further investigation is recommended for the following:

- Delineation of soil exceeding NJDEP remediation standards
- MGW evaluation for mobile COCs such as 2-Methylnaphthalene, Naphthalene, PFOS, and PFOA.
- Arsenic and Lead exceedances in groundwater at monitoring well MW-2.
- Determination of which exceedances are associated with specific historical uses versus site-wide AOCs, including historical fill.

Montrose recommends Remedial Investigation activities at 7 of the 9 AOCs:

AOC ID	Description	RI Recommended
AOC-2	Former Registered 500- or 550-Gallon Gasoline/Diesel-Fuel UST	No
AOC-3	Loading/Unloading Areas for Trash and Demolition debris	Yes
AOC-4	Storage Pads, Including Drum and/or Waste Storage	Yes
AOC-6	Waste Piles, as defined by N.J.A.C. 7:26	Yes
AOC-7	Historical Fill	Yes
AOC-9	Spill Incident # 96-04-19-0840-37: Spills from trucks cranes, and containers	Yes
AOC-10	Spill Incident # 23-03-27-1509-15: Stained soil underneath screening equipment	No
AOC-11	Former Railroad Spur	Yes
	Former On-Site Operations	
	AOC-13a: Steam Fitting Shop	No
	AOC-13b: Greenhouse	No
AOC-13	AOC-13c: Junk Storage Areas	Yes
A00-13	AOC-13d: Automotive Repair	Yes
	AOC-13e: Yaffa Paper Stock Warehouse	No
	AOC-13f: Yaffa Scrap Metal Operations	Yes
	AOC-13g: Weyhill Soil/Debris Stockpiling Operations	Yes

13.0 CONCLUSIONS

No exceedances of Total EPH, VOCs, Herbicides/Pesticides, or Cyanide were reported. The majority of soil exceedances were reported in the shallow soil samples, and included 5 PAHs, 2 SVOCs, Total PCBs, and 10 Metals. Two samples exceeded the calculated SS-SRSMGW for PFAS compounds. The only exceedances reported from the deep soil samples were Nickel and Mercury in test pit TP-8 from 8 to 8.5 feet bgs.

In groundwater, Arsenic and Lead exceedances were reported from MW-2 only, located at the former location of the Yaffa scrap metal and junk pile.

The Remedial Investigation will need to include a deeper examination of which exceedances are related to which AOCs (location-specific AOCs versus site-wide AOCs). This is especially true of historical fill. Additional samples may be needed to tease out the PAH and Metal exceedances related to fill material versus long-term industrial use, spills, and discharges.

Montrose's activities were conducted solely to assess soil and groundwater quality pertaining to the AOCs identified in Montrose's August 14, 2024 PAR.

Tables

Table 1 – May 5, 2023, Soil Analytical Results Table 2 – May 13, 2024, Soil Analytical Results Table 3A - September 5, 2024, Soil Analytical Results - VOCs Table 3B – September 5, 2024, Soil Analytical Results - SVOCs Table 3C - September 5, 2024, Soil Analytical Results - Inorganics Table 3D - September 5, 2024, Soil Analytical Results -SPLP Table 3E - September 5, 2024, Soil Analytical Results -SPLP PFAS Table 3F - September 5, 2024, Soil Analytical Results -PFAS Table 4A – September 12, 2024, Soil Analytical Results – VOCs Table 4B - September 12, 2024, Soil Analytical Results - SVOCs Table 4C – September 12, 2024, Soil Analytical Results – Inorganics Table 4D – September 12, 2024, Soil Analytical Results – SPLP Table 5 - Monitoring Well Construction Details Table 6A – September 23, 2024, Groundwater Analytical Results – VOCs Table 6B – September 23, 2024, Groundwater Analytical Results – SVOCs Table 6C – September 23, 2024, Groundwater Analytical Results – Inorganics Table 7 – Surrounding 200 Foot Radius Land Use Evaluation

TABLE 1 MAY 2023 SOIL ANALYTICAL RESULTS

"S. YAFFA SONS, INC."

616 CHESTNUT STREET ET AL., CITY OF CAMDEN, CAMDEN COUNTY, NJ 08103 BLOCK 331 / NJDEP CSRRP PI # 025881 Montrose Project # 11595-03

Sample ID:				SS-01-0-1			SS-02-0-1			SS	-01-	1-6	SS-03-0-1			
Lab ID:						709-1		2797		460-279709-3			460-279709-4			
Date Sampled:	2021 NJ	2021 NJ	2021 NJ Non-		5/5/2			5/5/23			/5/2			/5/23		
Sample Depth (inches bgs):	SRSMGW	Residential SRS (RSRS)	Residential		0-1			0-1			1-6			0-1		
		oko (koko)	SRS (NRSRS)	Conc	Q	MDL	Conc	Q	MDL	Conc	Q	MDL	Conc	Q	MDL	
V-1-4:1- O				1 000			000	30.10		000			00.10			
Volatile Organic Compounds (mg/kg)	0.20	160,000	NC	ı	U	0.00040		NA		I	NIA	1	1 1	NΙΛ		
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	0.20	3.5	NS 18		U	0.00019 0.00017		NA			NA NA			NA NA		
1,1,2-Trichloro-1,2,2-trifluoroethane	NS	NS NS	NS		Ü	0.00017		NA			NA			NA		
1,1,2-Trichloroethane	0.017	12	64		Ü	0.00014		NA			NA			NA		
1,1-Dichloroethane	0.24	120	640		U	0.00017		NA			NA			NA		
1,1-Dichloroethene	0.0069	11	180		U	0.00018		NA			NA			NA		
1,2,3-Trichlorobenzene	NS	NS	NS		U	0.00015		NA			NA			NA		
1,2,4-Trichlorobenzene	0.52	94	13000		U	0.00029		NA			NA			NA		
1.2-Dichlorobenzene	11	6700	110000		U	0.00029		NA			NA			NA		
1,2-Dichloroethane	0.0095	5.8	30		U	0.00024		NA			NA			NA		
1,2-Dichloropropane	0.0058	5.7	27		U	0.00034		NA			NA			NA		
1,3-Dichlorobenzene	11	6700	110000		U	0.00029		NA			NA			NA		
1.4-Dichlorobenzene	1.4	780	13000		U	0.00018		NA			NA			NA		
2-Butanone (MEK)	0.98	47,000	780,000		U	0.0003		NA			NA			NA		
2-Hexanone	0.15	390	6,500		Ü	0.0014		NA			NA			NA		
4-Methyl-2-pentanone (MIBK)	NS	NS	NS	0.0026	٦	0.0012		NA			NA			NA		
Acetone	19	70,000	NS	0.0088		0.0046		NA			NA			NA		
Benzene	0.0094	2.2	11		U	0.00021		NA			NA			NA		
Bromoform	0.018	88	460		U	0.00034		NA			NA			NA		
Bromomethane	0.043	18	82		U	0.0008		NA			NA			NA		
Carbon disulfide	3.7	NS	NS	0.00028	J	0.00021		NA			NA			NA		
Carbon tetrachloride	0.0075	1.4	6.9		J	0.00031		NA			NA			NA		
Chlorobenzene	0.64	510	8,400		U	0.00014		NA			NA			NA		
Chlorobromomethane	NS	NS	NS		U	0.00023		NA			NA			NA		
Chlorodibromomethane	0.005	8.3	43		U	0.00016		NA			NA			NA		
Dichlorodifluoromethane	38	16,000	260,000		U	0.00008		NA			NA			NA		
Chloroethane	NS	NS	NS		U	0.00042		NA			NA			NA		
Chloroform	0.33	590	13,000		U	0.00078		NA			NA			NA		
Chloromethane	NS	270	1,200		J	0.00035		NA			NA			NA		
cis-1,2-Dichloroethene	0.35	780	13,000		U	0.00029		NA			NA			NA		
cis-1,3-Dichloropropene	0.0063	4.8	23		U	0.00022 0.00018		NA			NA			NA		
Cyclohexane Dichlorobromomethane	NS 0.005	NS 11	NS 59		U	0.00018		NA NA			NA NA			NA NA		
Ethylbenzene	15	10	48		U	0.00021		NA			NA			NA		
Isopropylbenzene	22	7800	130,000		U	0.00010		NA			NA			NA		
Methyl acetate	22	78000	NS		U	0.00023		NA			NA					
					U	0.0035		NA						NA	\vdash	
Methyl tert-butyl ether	0.25	140	650								NA			NA		
Methylcyclohexane	NS	NS	NS		U	0.0004		NA			NA			NA		
Methylene Chloride	0.013	50	260		U	0.00092		NA			NA			NA		
Styrene	2.1	16,000	260,000		U	0.00022		NA			NA			NA		
Tetrachloroethene	0.0086	47	1,700	0.0009		0.00025		NA			NA			NA		
Toluene	7.8	6,300	100,000	1	U	0.00019		NA		-	NA			NA	$\vdash \vdash \vdash$	
trans-1,2-Dichloroethene trans-1,3-Dichloropropene	0.56 0.0063	1,300 4.8	22,000 23		U	0.0002 0.00021		NA NA			NA NA			NA NA	\vdash	
Trichloroethene	0.0065	3.0	14		U	0.00021		NA			NA NA			NA		
Trichlorofluoromethane	29	23000.0	390000		U	0.00026		NA			NA NA			NA		
					U			NA			NA NA					
Vinyl chloride	0.0067	0.97	5.0			0.00044								NA	\vdash	
Xylenes, Total	19 NC	12,000	190,000	0.040 (4)	U	0.00014		NA			NA			NA	\vdash	
VOC TIC Conc. (# TICs)	NS	NS	NS	0.018 (1)			I	NA		l	NA			NA	Щ	

TABLE 1 MAY 2023 SOIL ANALYTICAL RESULTS

"S. YAFFA SONS, INC."

616 CHESTNUT STREET ET AL., CITY OF CAMDEN, CAMDEN COUNTY, NJ 08103 BLOCK 331 / NJDEP CSRRP PI # 025881 Montrose Project # 11595-03

Sample ID:				SS-01-0-1		SS-02-0-1			SS	-01-	1-6	SS-03-0-1			
Lab ID:					0-2797			27970		460-2			460-279709-4		
Date Sampled:	2021 NJ	2021 NJ	2021 NJ Non-	-10	5/5/2			5/5/23			/5/2:			/5/23	
Sample Depth (inches bgs):	SRSMGW	Residential	Residential		0-1	<u> </u>	 	0-1	<u>'</u>		1-6	<u> </u>	_	0-1	
Sample Depth (mones bgs).		SRS (RSRS)	SRS (NRSRS)												
				Conc	Q	MDL	Conc	Q	MDL	Conc	Q	MDL	Conc	Q	MDL
Semi-Volatile Organic Compounds (n	ng/kg)														
1,1'-Biphenyl	NS	87	450		U	0.13		NA			NA			NA	
1,2,4,5-Tetrachlorobenzene	NS	23	390		U	0.11		NA			NA			NA	
2,2'-oxybis[1-chloropropane]	1.9	3,100	52,000		U	0.22		NA			NA			NA	
2,4-Dinitrotoluene	NS	NS	NS		U	0.39		NA			NA			NA	
2,6-Dinitrotoluene	NS	NS	NS		U	0.26		NA			NA			NA	
2-Chloronaphthalene	NS	4,800	67,000		U	0.17		NA			NA			NA	
2-Methylnaphthalene	3.1	240	3,300		U	0.1		NA			NA			NA	
2-Nitroaniline	NS	NS	NS		U	0.28		NA			NA			NA	
3,3'-Dichlorobenzidine	3.9	1.2	5.7		U *-	0.55		NA			NA			NA	
3-Nitroaniline	NS	NS	NS		U	0.86		NA			NA			NA	
4-Bromophenyl phenyl ether	NS	NS	NS		U	0.14		NA			NA			NA	
4-Chloroaniline	0.23	2.7	13		U	0.65		NA			NA			NA	
4-Chlorophenyl phenyl ether	NS	NS	NS		U	0.13		NA			NA			NA	
4-Nitroaniline	NS	27	130		U	0.42		NA			NA			NA	
Acenaphthene	NS	3,600	50,000		U	0.1		NA			NA			NA	
Acenaphthylene	NS	NS	NS		U	0.1		NA			NA			NA	
Acetophenone	3.6	7800	130000		U	0.18		NA			NA			NA	
Anthracene	NS	18,000	250,000		U	0.11		NA			NA			NA	
Atrazine	0.33	220	3,200		U *+	0.21		NA			NA			NA	
Benzaldehyde	NS	170	910		U	0.6		NA			NA			NA	
Benzo[a]anthracene	0.71	5.1	23		U	0.27		NA			NA			NA	
Benzo[a]pyrene	NS	0.51	2.3		U	0.097		NA			NA			NA	
Benzo[b]fluoranthene	NS	5.1	23		U	0.094		NA			NA			NA	
Benzo[g,h,i]perylene	NS	NS	NS		U	0.11		NA			NA			NA	
Benzo[k]fluoranthene	NS	51	230		U	0.071		NA			NA			NA	
Bis(2-chloroethoxy)methane	NS	190	2,700		U	0.28		NA			NA			NA	
Bis(2-chloroethyl)ether	0.33	0.63	3.3		U	0.13		NA			NA			NA	
Bis(2-ethylhexyl) phthalate	14	39	180	9.4		0.19		NA			NA			NA	
Butyl benzyl phthalate	29	290	1,300		U	0.17		NA			NA			NA	
Caprolactam	16	290	1,300		U	0.57		NA			NA			NA	
Carbazole	NS	NS	NS		U	0.14		NA			NA			NA	
Chrysene	NS	510	2,300		U	0.15		NA			NA			NA	
Dibenz(a,h)anthracene	NS	0.51	2.3		U	0.16		NA			NA			NA	
Dibenzofuran	NS	NS	NS		U	0.12		NA			NA			NA	
Diethyl phthalate	44	51,000	730,000		U	0.12		NA			NA			NA	$\vdash \vdash \vdash$
Dimethyl phthalate	NS	NS 6300	NS 01.000		U	0.83		NA			NA			NA	
Di-n-butyl phthalate	NS	6300	91,000		U	0.14 0.19	1	NA			NA			NA	$\vdash \vdash$
Di-n-octyl phthalate	NS NS	630	9,100	0.14	U	0.19		NA NA			NA			NA	$\vdash \vdash \vdash$
Fluoranthene	NS NS	2,400	33,000	0.14	U		-	NA			NA NA			NA	\vdash
Fluorene		2,400	33,000		U	0.11	-				NA			NA	\vdash
Hexachlorobenzene Hexachlorobutadiene	0.17 0.17	0.43 8.9	2.3 47		U	0.17 0.078	-	NA NA			NA			NA NA	\vdash
Hexachlorocyclopentadiene	2.5	2.7	7,800		U	0.078		NA			NA			NA	$\vdash \vdash \vdash$
Hexachloroethane	0.17	17	91		U	0.32		NA			NA			NA	$\vdash \vdash \vdash$
Indeno[1,2,3-cd]pyrene	NS	5.1	23		U	0.13		NA			NA			NA	$\vdash \vdash$
Isophorone	0.23	570	2,700		U	1.1		NA			NA			NA	$\vdash \vdash$
Naphthalene	19	5.7	2,700		U	0.063		NA			NA			NA	$\vdash \vdash \vdash$
Nitrobenzene	0.17	7.5	36		U	0.063		NA			NA			NA	$\vdash \vdash$
N-Nitrosodi-n-propylamine	0.17	0.17	0.36		U	0.26		NA			NA			NA	$\vdash \vdash \vdash$
N-Nitrosodi-n-propylamine N-Nitrosodiphenvlamine	1.1	110	520		U	0.26		NA			NA			NA	$\vdash \vdash \vdash$
Phenanthrene	NS	NS	NS NS		U	0.3		NA			NA			NA	$\vdash \vdash$
Pyrene	NS	1,800	25,000	0.13	J	0.15		NA			NA			NA	$\vdash \vdash$
SVOC TIC Conc. (# TICs)	NS	NS	25,000 NS	39.2	J	0.081		NA			NA			NA	$\vdash \vdash$
SVOC TIC COIIC. (# TICS)	CVI	CVI	CVI	J9.Z	ш		1	INA		<u> </u>	IVA		ļ	INA	ш

TABLE 1 MAY 2023 SOIL ANALYTICAL RESULTS

"S. YAFFA SONS, INC."

616 CHESTNUT STREET ET AL., CITY OF CAMDEN, CAMDEN COUNTY, NJ 08103 BLOCK 331 / NJDEP CSRRP PI # 025881

Montrose Project # 11595-03

Sample ID:				SS-01-0-1			SS-02-0-1			SS	1-6	SS-03-0-1			
Lab ID:				_	0-2797	-		2797		460-2		460-279709-4			
Date Sampled:	2021 NJ	2021 NJ	2021 NJ Non-		5/5/2			5/5/23			/5/2			/5/23	
Sample Depth (inches bgs):	SRSMGW	Residential	Residential		0-1		`	0-1	<u> </u>	_	1-6	•		0-1	
Campie Bepair (menes 1997).		SRS (RSRS)	SRS (NRSRS)	Conc	a	MDL	Conc	Q	MDL	Conc	Q	MDL	Conc		MDL
				Conc	Q	IVIDL	Conc	Q	WIDL	Conc	ŭ	MDL	COIIC	Q	MIDL
NJDEP EPH (mg/kg)	NIO	NO	NO	I		44	1		0.0	ı		4.4	l e		40
C10-C12 Aromatics	NS	NS	NS		U U *1	11		U U *1	2.3	00	*1	11	20	*1	12
C12-C16 Aromatics	NS NS	NS NS	NS NS	130	0 "1	17 28	4.5	0 "1	3 6	29 320	"1	17 29	30 490	1	18 29
C16-C21 Aromatics C21-C36 Aromatic	NS NS	NS NS	NS NS	1.500		44	15 61		9	1,300		46	1.600		47
Total Aromatics	NS	NS NS	NS NS	1,600		2	76		2	1,700		2	2,100		2
C9-C12 Aliphatics	NS	NS	NS NS	1,000	U *1	660	70	U *1	34	76	*1	69	2,100	U *1	70
C12-C16 Aliphatics	NS	NS	NS		U *1	440	48	*1	23	400	*1	46	480	*1	47
C16-C21 Aliphatics	NS	NS	NS	2,500	*1	440	240	*1	23	720	*1	46	1,100	*1	47
C21-C40 Aliphatics	NS	NS	NS NS	43,000	*1	1,500	1,100	*1	79	3,200	*1	160	4,300	*1	160
Total Aliphatics	NS	NS NS	NS NS	46,000	- '	2	1,400	<u>'</u>	2	4.400	- '	2	5,900	'	2
Total EPH	NS	5,300	75,000	48,000		2	1,500		2	6,100		2	8,000		2
Total EPH (C9-C40)	NS	5,300	75,000	40,000		1,500	21,000			47,000			1,000		160
PCBs (mg/kg)	NO	3,300	7 3,000	40,000		1,300	21,000		1,000	47,000		1,000	1,000		100
Aroclor 1016	NS	NS	NS		U	0.02		NA			NA			NA	
Aroclor 1221	NS	NS	NS		U	0.02		NA			NA			NA	
Aroclor 1232	NS	NS	NS		U	0.02		NA			NA			NA	
Aroclor 1242	NS	NS	NS		U	0.02		NA			NA			NA	
Aroclor 1248	NS	NS	NS		Ü	0.02		NA			NA			NA	
Aroclor 1254	NS	NS	NS		Ü	0.02		NA			NA			NA	
Aroclor 1260	NS	NS	NS		Ü	0.02		NA			NA			NA	
Aroclor 1268	NS	NS	NS		Ū	0.02		NA			NA			NA	
Aroclor-1262	NS	NS	NS		U	0.02		NA			NA			NA	
Total PCBs	1.6	0.25	1.1		U	0.02		NA			NA			NA	
Metals (mg/kg)															
Aluminum	NS	78,000	NS	8,310		5.4		NA			NA			NA	
Antimony	5.4	31	520	0.29	J	0.14		NA			NA			NA	
Arsenic	19	19	19	3.5		0.1		NA			NA			NA	
Barium	2100	16,000	260,000	74.9		0.14		NA			NA			NA	
Beryllium	0.70	160	2,600	0.46		0.056		NA			NA			NA	
Cadmium	1.9	71	1,100	0.24	J	0.11		NA			NA			NA	
Calcium	NS	NS	NS	25,200		40.1		NA			NA			NA	
Chromium	NS	NS	NS	23.8		0.89		NA			NA			NA	
Cobalt	90	23	390	5.4		0.15		NA			NA			NA	
Copper	910	3,100	52,000	37.7		0.36		NA			NA			NA	
Iron	NS	NS	NS	16,500		19.9		NA			NA			NA	
Lead	90	400	800	42.1		0.2		NA			NA			NA	
Magnesium	NS	NS	NS	3,800		10		NA			NA			NA	L
Manganese	NS	1,900	31,000	231		0.4		NA			NA			NA	L
Mercury	0.10	23	390	0.11		0.0079		NA			NA			NA	L
Nickel	48	1,600	26,000	13.4		0.46		NA			NA			NA	
Potassium	NS	NS	NS	1,280	. .	15.9		NA			NA			NA	
Selenium	11	390	6,500	0.17	J	0.13		NA			NA			NA	
Silver	0.50	390	6,500	465	U	0.088		NA			NA			NA	—
Sodium	NS	NS	NS	125	⊢. ∣	45		NA			NA			NA	—
Thallium	NS	NS	NS 0.500	0.078	J	0.04		NA			NA			NA	
Vanadium 	NS	390	6,500	26.5		0.2		NA			NA			NA	-
Zinc	930	23,000	390,000	792		3		NA			NA			NA	ldot

mg/kg = Milligrams per kilogram

inches bgs = Inches below ground surface

Q = Qualifier; NS = No standard; NA = Not Analyzed

U = Analyzed for but Not Detected at the MDL

 ${\sf J}$ = Concentration detected at a value below the RL and above the MDL

*- = LCS and/or LCSD is outside acceptance limits, low biased.

*+ = LCS and/or LCSD is outside acceptance limits, high biased.

*1 = LCS/LCSD RPD exceeds control limits.

MDL = Method Detection Limit

Exceeds 2021 NJ SRS for the Migration to Groundwater Pathway (SRSMGW)

Exceeds 2021 NJ Residential Soil Remediation Standard (RSRS)

Exceeds 2021 NJ Non-Residential Soil Remediation Standard (NRSRS)

TABLE 2

MAY 2024 SOIL ANALYTICAL RESULTS

"S. YAFFA SONS, INC."

616 CHESTNUT STREET ET AL., CITY OF CAMDEN, CAMDEN COUNTY, NJ 08103 BLOCK 331

NJDEP CSRRP PI # 025881

Montrose Project # 11595-03

Sample ID:			0004 N.I.N.	PE1	-0.0-	0.5	PE2	2-0.0-	0.5	PE3	-0.0-	0.5	PE4-	-0.0	0.5	PE:	5-2.0-2	2.5
Lab ID:	0004 N.I	2021 NJ	2021 NJ Non-	460-	30406	60-1	460-	30406	60-2	460-3	040	60-3	460-3	040	60-4	460-	30406	0-5
Date Sampled:	2021 NJ SRSMGW	Residential	Residential SRS	5/	13/24	1	5/	13/24	ļ	5/	13/2	4	5/	13/2	4	5.	/13/24	,
Sample Depth (ft bgs)	SKSWIGW	SRS (RSRS)	(NRSRS)	0.	0-0.5	5	0.	.0-0.5	5	0.0-0.5		0.0-0.5		5	2.0-2.5			
			(NKSKS)	Conc	Q	MDL	Conc	Q	MDL	Conc	Q	MDL	Conc	Q	MDL	Conc	Q	MDL
NJDEP EPH (mg/kg)																		
C10-C12 Aromatics	NS	NS	NS		NA			NA			NA			NA			U	2.2
C12-C16 Aromatics	NS	NS	NS		NA			NA			NA			NA			U	11
C16-C21 Aromatics	NS	NS	NS		NA			NA			NA			NA		3.3	U	3.3
C21-C36 Aromatic	NS	NS	NS		NA			NA			NA			NA		69		11
Total Aromatics	NS	NS	NS		NA			NA			NA			NA		8.3		5.5
C9-C12 Aliphatics	NS	NS	NS		NA			NA			NA			NA		99		8.8
C12-C16 Aliphatics	NS	NS	NS		NA			NA			NA			NA		1,200		39
C16-C21 Aliphatics	NS	NS	NS		NA			NA			NA			NA			U	17
C21-C40 Aliphatics	NS	NS	NS		NA			NA			NA			NA		1,300		0.01
Total Aliphatics	NS	NS	NS		NA			NA			NA			NA		110		0.01
Total EPH	NS	5,300	75,000		NA			NA			NA			NA		1,400		0.01
Total EPH (C9-C40)	NS	5,300	75,000	160		78	430		15	39		16	230		15	7,600		780
Metals (mg/kg)						,												
Mercury	0.10	23	390	0.59		0.01	0.22		0.01	0.5		0.01	0.62		0.01	1.8		0.03
SPLP Metals (µg/L)																		
Mercury	NS	NS	NS		NA			NA			NA			NA			U	0.09
SPLP																		
Sample Initial Amt (Kg)	NS	NS	NS		NA			NA			NA			NA		0.1		
Leachate Final pH (SU)	NS	NS	NS		NA			NA			NA			NA		9.55		
Leachate Final Amt (L)	NS	NS	NS		NA			NA			NA			NA		2		

Ft bgs = feet below ground surface

mg/kg = Milligrams per kilogram

μg/L = Micrograms per liter

Q = Qualifier

NA = Not analyzed

NS = No standard

U = Analyzed for but Not Detected at the MDL

J = Concentration detected at a value below the RL and above the MDL

*- = LCS and/or LCSD is outside acceptance limits, low biased.

*+ = LCS and/or LCSD is outside acceptance limits, high biased.

*1 = LCS/LCSD RPD exceeds control limits.

MDL = Method Detection Limit

Exceeds 2021 NJ SRS for the Migration to Groundwater Pathway (SRSMGW)

Exceeds 2021 NJ Residential Soil Remediation Standard (RSRS)

Exceeds 2021 NJ Non-Residential Soil Remediation Standard (NRSRS)

TABLE 3A SEPTEMBER 2024 SOIL ANALYTICAL RESULTS -VOLATILES "S. YAFFA AND SONS, INC."

616 CHESTNUT STREET ET AL., CITY OF CAMDEN, CAMDEN COUNTY, NJ 08103 BLOCK 331 / NJDEP CSRRP PI # 025881

Montrose	Pro	iect #	11595-03	
Monthogo		jeet #	11000-00	

Sample ID:				GP-	1-202	4-6-6.5	GP-	1-202	4-8-8.5	GP-	2-2024	1-1-1.5	GP-	-2-202	4-8.5-9
Lab ID:		2021 NJ	2021 NJ Non-	46	0-310	859-3	46	0-310	859-4	460	0-3108	359-5	46	0-310	859-6
Date Sampled:	2021 NJ	Residential	Residential		9/5/2			9/5/2			9/5/2			9/5/2	
Sample Depth (ft bgs):	SRSMGW	SRS (RSRS)	SRS (NRSRS)		6-6.	5		8-8.	5		1-1.5	5		8.5-	9
			,	Conc	Q	MDL	Conc	Q	MDL	Conc	Q	MDL	Conc	Q	MDL
Volatile Organic Compounds (mg/kg)															
1,1,1-Trichloroethane	0.20	160,000	NS		U	0.00019		U	0.00012		U	0.00016		U	0.0001
1,1,2,2-Tetrachloroethane	0.0069	3.5	18		U	0.00018		U	0.00011		U	0.00015		U	0.000096
1,1,2-Trichloro-1,2,2-trifluoroethane	NS	NS	NS		U	0.00025		U	0.00016		U	0.00021		U	0.00013
1,1,2-Trichloroethane	0.017	12	64		U	0.00015		U	0.000092		U	0.00012		U	0.00008
1,1-Dichloroethane	0.24	120	640		U	0.00017		U	0.00011		U	0.00014		U	0.000092
1,1-Dichloroethene	0.0069	11	180		כ	0.00019		U	0.00012		U	0.00015		U	0.0001
1,2,3-Trichlorobenzene	NS	NS	NS		U	0.00015		U	0.000093		U	0.00012		U	0.000081
1,2,4-Trichlorobenzene	0.52	94	13,000		כ	0.0003		U	0.00018		U	0.00025		U	0.00016
1,2-Dichlorobenzene	11	6,700	110,000		כ	0.0003		U	0.00019		U	0.00025		U	0.00016
1,2-Dichloroethane	0.0095	5.8	30		U	0.00024		С	0.00015		U	0.0002		U	0.00013
1,2-Dichloropropane	0.0058	5.7	27		U	0.00035		U	0.00022		U	0.00029		U	0.00019
1,3-Dichlorobenzene	11	6,700	110,000		U	0.0003		U	0.00019		U	0.00025		U	0.00016
1,4-Dichlorobenzene	1.4	780	13,000		U	0.00019		U	0.00012		U	0.00015		U	0.0001
2-Butanone (MEK)	0.98	47,000	780,000		U	0.0003		U	0.00019		U	0.00025		U	0.00016
2-Hexanone	0.15	390	6,500		U	0.0014		U	0.00088		U	0.0012		U	0.00076
4-Methyl-2-pentanone (MIBK)	NS	NS	NS		U	0.0013		U	0.0008		U	0.0011		U	0.0007
Acetone	19	70,000	NS		U	0.0047		U	0.0029		U	0.0039		U	0.0026
Acrolein	NS	NS	NS		U	0.023		U	0.014		U	0.019		U	0.013
Acrylonitrile	NS	NS	NS		U	0.004		U	0.0025		U	0.0033		U	0.0022
Benzene	0.0094	2.2	11		U	0.00021		U	0.00013		U	0.00018		U	0.00012
Bromoform	0.018	88	460		U	0.00035		U	0.00022		U	0.00029		U	0.00019
Bromomethane	0.043	18	82		U	0.00083		U	0.00052		Ū	0.00069		U	0.00045
Carbon disulfide	3.7	NS	NS		U	0.00022		U	0.00014		Ü	0.00018		U	0.00012
Carbon tetrachloride	0.0075	1.4	6.9		U	0.00032		U	0.0002		U	0.00027		U	0.00017
Chlorobenzene	0.64	510	8,400		U	0.00015		U	0.000091		Ū	0.00012		U	0.000079
Chlorobromomethane	NS	NS	NS		U	0.00023		U	0.00014		U	0.00019		U	0.00013
Chlorodibromomethane	0.005	8.3	43		U	0.00016		IJ	0.0001		IJ	0.00013		IJ	0.000087
Chloroethane	NS	NS	NS		U *+	0.00043		U *+	0.00027		U *+	0.00036		U *+	0.00023
Chloroform	0.33	590	13,000		U	0.0008		U	0.0005		U	0.00067		U	0.00043
Chloromethane	NS	270	1,200		U	0.00036		U	0.00022		U	0.0003		U	0.00019
cis-1.2-Dichloroethene	0.35	780	13,000		Ü	0.0003		U	0.00018		IJ	0.00025		U	0.00016
cis-1,3-Dichloropropene	0.0063	4.8	23		U	0.00023		U	0.00014		U	0.00019		U	0.00010
Cyclohexane	NS	NS NS	NS		U	0.00018		U	0.00014		IJ	0.00015		IJ	0.000099
Dichlorobromomethane	0.0050	11	59		U	0.00010		U	0.00011		U	0.00018		U	0.000033
Dichlorodifluoromethane	38	16.000	260.000		U	0.00021		U	0.00013		IJ	0.00010		U	0.00011
Ethylbenzene	15	10,000	48		U	0.00028		U	0.00017		IJ	0.00023		U	0.00013
Isopropylbenzene	22	7,800	130,000		U	0.00010		U	0.00015		U	0.00014		U	0.00003
Methyl acetate	22	78,000	NS		U *+	0.00024		11*+	0.00013		U *+	0.0002		U *+	0.00013
Methyl tert-butyl ether	0.25	140	650		U.	0.00042		U	0.00022		U	0.00035		U .	0.00013
Methylcyclohexane	NS NS	NS NS	NS		U	0.00042		U	0.00026		U	0.00033		U	0.00023
Methylene Chloride	0.013	50	260		U	0.00041		U	0.00026		U	0.00034		U	0.00022
	2.1	16,000	260,000		IJ	0.00093		U	0.00039		U	0.00079		U	0.00031
Styrene Tert-hutyl Alcohol	0.32	1,400	23,000		U	0.00023		U	0.00014		U	0.00019		U	0.00012
Tert-butyl Alcohol	0.32	1,400	1,700	-	U	0.0005		U	0.004		U	0.0054	-	U	0.0035
Tetrachloroethene Toluene	7.8	6,300	1,700	-	U	0.00025		U	0.00016		U	0.00021	-	U	0.00014
	0.56	1,300	22,000	-	U	0.00019		U	0.00012		U	0.00016	-	U	0.0001
trans-1,2-Dichloroethene		,					-				_		-	_	
trans-1,3-Dichloropropene	0.0063	4.8	23		U	0.00022		U	0.00014		U	0.00018		U	0.00012
Trichloroethene	0.0065	3.0	14		U	0.00026		_	0.00017		_	0.00022	0.0005	U	0.00014
Trichlorofluoromethane	29	23,000	390,000	-	U	0.00034		U	0.00021		U	0.00028	0.0005	<u> </u>	0.00018
Vinyl chloride	0.0067	0.97	5.0		U	0.00045		U	0.00028		U	0.00037		U	0.00024
Xylenes, Total	19	12,000	190,000	NID (S)	U	0.00014	ND (S)	U	0.00009	ND (a)	U	0.00012	ND (2)	U	0.000078
VOC TIC Conc. (# TICs)	NS	NS	NS	ND (0)			ND (0)			ND (0)			ND (0)		

mg/kg = Milligrams per kilogram

ft bgs = feet below ground surface

Q = Qualifier

NS = No standard

U = Analyzed for but Not Detected at the MDL

J = Concentration detected at a value below the RL and above the MDL

MDL = Method Detection Limit

Exceeds 2021 NJ SRS for the Migration to Groundwater Pathway (SRSMGW)
Exceeds 2021 NJ Residential Soil Remediation Standard (RSRS)

Exceeds 2021 NJ Non-Residential Soil Remediation Standard (NRSRS)

Exceeds SRSMGW and RSRS

* = Exceeds NRSRS and SRSMGW

F1 = MS and/or MSD recovery exceeds control limits.

*+ = LCS and/or LCSD is outside acceptance limits, high biased.

*1 = LCS/LCSD RPD exceeds control limits.

 $p = The \ \%RPD \ between \ the \ primary \ and \ confirmation \ column/detector \ is \ >40\%. \ The \ lower \ value \ has \ been \ reported.$

 $\mbox{\bf B}$ = Compound was found in the blank and sample.

TABLE 3A SEPTEMBER 2024 SOIL ANALYTICAL RESULTS -VOLATILES "S. YAFFA AND SONS, INC."

616 CHESTNUT STREET ET AL., CITY OF CAMDEN, CAMDEN COUNTY, NJ 08103 BLOCK 331 / NJDEP CSRRP PI # 025881

Montrose Project # 11595-03

Sample ID:				GP-	3-2024	1-1-1.5	GP-3-	2024-	9.5-10	GP-4	1-2024	l-1-1.5	GP-4-	2024-	10-10.5
Lab ID:	0004 111	2021 NJ	2021 NJ Non-	460	0-3108	359-1	460	-3108	59-2	460	0-3108	59-7	460	-3108	59-8
Date Sampled:	2021 NJ	Residential	Residential		9/5/2	4		9/5/24			9/5/2	4		9/5/2	4
Sample Depth (ft bgs):	SRSMGW	SRS (RSRS)	SRS (NRSRS)		1-1.5	5		9.5-10			1-1.5	,		10-10	5
				Conc	Q	MDL	Conc	Q	MDL	Conc	Q	MDL	Conc	Q	MDL
Volatile Organic Compounds (mg/kg)	1	,													
1,1,1-Trichloroethane	0.20	160,000	NS		U	0.00026		U	0.00018		U	0.00023		U	0.000083
1,1,2,2-Tetrachloroethane	0.0069	3.5	18		U	0.00024		U	0.00017		U	0.00021		U	0.000076
1,1,2-Trichloro-1,2,2-trifluoroethane	NS	NS	NS		U	0.00034		U	0.00023		U	0.00029		U	0.00011
1,1,2-Trichloroethane	0.017	12	64		U	0.0002		U	0.00014		U	0.00017		U	0.000063
1,1-Dichloroethane	0.24	120	640		U	0.00023		U	0.00016		U	0.0002		U	0.000073
1,1-Dichloroethene	0.0069	11	180		U	0.00025		U	0.00017		U	0.00022		U	80000.0
1,2,3-Trichlorobenzene	NS	NS	NS		U	0.0002		U	0.00014		U	0.00018		U	0.000064
1,2,4-Trichlorobenzene	0.52	94	13,000		U	0.0004		U	0.00028		U	0.00035		U	0.00013
1,2-Dichlorobenzene	11	6,700	110,000		U	0.0004		U	0.00028		U	0.00035		U	0.00013
1,2-Dichloroethane	0.0095	5.8	30		U	0.00033		U	0.00023		U	0.00029		U	0.0001
1,2-Dichloropropane	0.0058	5.7	27		U	0.00047		U	0.00033		U	0.00041		U	0.00015
1,3-Dichlorobenzene	11	6,700	110,000		U	0.00041		U	0.00028		U	0.00035		U	0.00013
1,4-Dichlorobenzene	1.4	780	13,000		U	0.00025		U	0.00017		U	0.00022		U	0.00008
2-Butanone (MEK)	0.98	47,000	780,000		U	0.00041		U	0.00028		U	0.00036		U	0.00013
2-Hexanone	0.15	390	6,500		U	0.0019		U	0.0013		U	0.0017		U	0.00061
4-Methyl-2-pentanone (MIBK)	NS	NS	NS		U	0.0017		Ū	0.0012		U	0.0015		U	0.00055
Acetone	19	70,000	NS		U	0.0064	0.0077		0.0044	0.034		0.0055	0.032		0.002
Acrolein	NS	NS	NS		U	0.031		U	0.022		U	0.027		U	0.0099
Acrylonitrile	NS	NS	NS		U	0.0054		U	0.0038		U	0.0047		U	0.0017
Benzene	0.0094	2.2	11		IJ	0.00029		U	0.0002		U	0.00025		U	0.000091
Bromoform	0.018	88	460		U	0.00047		U	0.00033		U	0.00041		U	0.00015
Bromomethane	0.043	18	82		U	0.00047		U	0.00033		U	0.00097		U	0.00015
Carbon disulfide	3.7	NS	NS NS		U	0.0003		U	0.00077		U	0.00037		U	0.000033
Carbon tetrachloride	0.0075	1.4	6.9		U	0.00043		U	0.00021		U	0.00020		U	0.000034
Chlorobenzene	0.64	510	8,400		U	0.00043		U	0.0003		U	0.00037		U	0.000014
Chlorobromomethane	NS	NS	0,400 NS		U	0.0002		U	0.00014		U	0.00017		U	0.00003
Chlorodibromomethane	0.005	8.3	43		U	0.00031		U	0.00022		U	0.00027		U	0.00001
Chloroethane	0.005 NS	NS NS	NS NS		U *+	0.00022		U*+	0.00013		U*+	0.00019		U*+	0.000089
Chloroform		590	13.000		U	0.00036		U	0.0004		U	0.0003		U	0.00018
	0.33	270	-,		U			U			U			U	
Chloromethane	NS		1,200		U	0.00048		U	0.00034		U	0.00042		U	0.00015
cis-1,2-Dichloroethene	0.35	780	13,000 23		U	0.0004		U	0.00028			0.00035		U	0.00013 0.000097
cis-1,3-Dichloropropene	0.0063	4.8				0.0003			0.00021		U	0.00026		_	
Cyclohexane	NS	NS	NS		U	0.00025		U	0.00017		U	0.00021		U	0.000078
Dichlorobromomethane	0.0050	11	59		U	0.00029		U	0.0002		U	0.00025		U	0.000091
Dichlorodifluoromethane	38	16,000	260,000		U	0.00038		U	0.00026		U	0.00033		U	0.00012
Ethylbenzene	15	10	48		U	0.00022		U	0.00015		U	0.00019		U	0.00007
Isopropylbenzene	22	7,800	130,000		U	0.00032		U	0.00022		U	0.00028		U	0.0001
Methyl acetate	22	78,000	NS		U *+	0.0048		U *+	0.0033		U *+	0.0042	0.0035	*+	0.0015
Methyl tert-butyl ether	0.25	140	650		U	0.00057		U	0.0004		U	0.0005		U	0.00018
Methylcyclohexane	NS	NS	NS		U	0.00056		U	0.00039		U	0.00048		U	0.00018
Methylene Chloride	0.013	50	260		U	0.0013	0.0013	J	0.00088		U	0.0011	0.0005	J	0.00041
Styrene	2.1	16,000	260,000		U	0.00031		U	0.00021	ļ	U	0.00027		U	0.000098
Tert-butyl Alcohol	0.32	1,400	23,000		U	0.0087		U	0.0061	ļ	U	0.0076	0.014		0.0028
Tetrachloroethene	0.0086	47	1,700		U	0.00034		U	0.00024		U	0.00029		U	0.00011
Toluene	7.8	6,300	100,000		U	0.00026		U	0.00018		U	0.00023		U	0.000083
trans-1,2-Dichloroethene	0.56	1,300	22,000		U	0.00027		U	0.00019		U	0.00024		U	0.000087
trans-1,3-Dichloropropene	0.0063	4.8	23		U	0.0003		U	0.00021		U	0.00026		U	0.000094
Trichloroethene	0.0065	3.0	14	0.0017		0.00036		U	0.00025		U	0.00031		U	0.00011
Trichlorofluoromethane	29	23,000	390,000		U	0.00045		U	0.00031	0.0023		0.00039	0.00033	J	0.00014
Vinyl chloride	0.0067	0.97	5.0		U	0.00061		U	0.00042		U	0.00053		U	0.00019
Xylenes, Total	19	12,000	190,000		U	0.00019		U	0.00013		U	0.00017		U	0.000062
VOC TIC Conc. (# TICs)	NS	NS	NS	ND (0)			ND (0)			ND (0)			ND (0)		
mg/kg = Milligrams per kilogram				/	_		,			/	•		/		

mg/kg = Milligrams per kilogram

ft bgs = feet below ground surface

Q = Qualifier

NS = No standard

U = Analyzed for but Not Detected at the MDL

J = Concentration detected at a value below the RL and above the MDL

MDL = Method Detection Limit

Exceeds 2021 NJ SRS for the Migration to Groundwater Pathway (SRSMGW)
Exceeds 2021 NJ Residential Soil Remediation Standard (RSRS)

Exceeds 2021 NJ Non-Residential Soil Remediation Standard (NRSRS)

Exceeds SRSMGW and RSRS

* = Exceeds NRSRS and SRSMGW

F1 = MS and/or MSD recovery exceeds control limits.

*+ = LCS and/or LCSD is outside acceptance limits, high biased.

*1 = LCS/LCSD RPD exceeds control limits.

p = The %RPD between the primary and confirmation column/detector is >40%. The lower value α

 $\ensuremath{\mathsf{B}}$ = Compound was found in the blank and sample.

TABLE 3B SEPTEMBER 2024 SOIL ANALYTICAL RESULTS - SEMIVOLATILES "S. YAFFA AND SONS, INC." 616 CHESTNUT STREET ET AL., CITY OF CAMDEN, CAMDEN COUNTY, NJ 08103 BLOCK 331 / NJDEP CSRRP PI # 025881

Montrose Project # 11595-03

Sample ID:			2021 NJ Non-			4-6-6.5			4-8-8.5			l-1-1.5			4-8.5-9
Lab ID: Date Sampled:	2021 NJ	2021 NJ Residential	Residential	46	0-3108 9/5/2		46	9/5/2		460	9/5/2		46	9/5/2	
Sample Depth (ft bgs)	SRSMGW	SRS (RSRS)	SRS		6-6.			8-8.			1-1.5			8.5-	
			(NRSRS)	Conc	Q	MDL	Conc	Q	MDL	Conc	Q	MDL	Conc	Q	MDL
Semi-Volatile Organic Compounds (r 1,1'-Biphenyl		0.7	450		NA		ı	NA	1	0.019	J	0.012	1	U	0.012
1,2,4,5-Tetrachlorobenzene	NS NS	87 23	390		NA			NA		0.019	U	0.012		U	0.012
1.2-Diphenylhydrazine	NS	NS	NS		NA			NA			U	0.013		U	0.013
2,2'-oxybis[1-chloropropane]	1.9	3,100	52,000		NA			NA			U	0.02		U	0.02
2,3,4,6-Tetrachlorophenol	26	1,900	27,000		NA			NA			U	0.023		U	0.023
2,4,5-Trichlorophenol	68	6,300	91,000		NA			NA			U	0.034		U	0.034
2,4,6-Trichlorophenol	0.86	49	230		NA			NA			U	0.043		U	0.043
2,4-Dichlorophenol 2,4-Dimethylphenol	0.19 2.3	190 1,300	2,700 18,000		NA NA			NA NA			U U*+	0.021		U U*+	0.021
2,4-Dinterryphenol	0.33	130	1,800		NA			NA			U	0.16		U	0.16
2,4-Dinitrotoluene	NS	NS	NS		NA			NA			U	0.036		U	0.036
2,6-Dinitrotoluene	NS	NS	NS		NA			NA			U	0.024		U	0.024
2-Chloronaphthalene	NS	4,800	67,000		NA			NA			U	0.015		U	0.015
2-Chlorophenol	0.76	390	6,500		NA			NA			U	0.012		U	0.012
2-Methylnaphthalene	3.1	240	3,300		NA		-	NA		0.058	J	0.0093		U	0.0093
2-Methylphenol 2-Nitroaniline	0.77 NS	320 NS	4,600 NS		NA NA			NA NA			U	0.012		U	0.012 0.025
2-Nitrophenol	NS	NS NS	NS NS		NA		<u> </u>	NA			U	0.025		U	0.025
3,3'-Dichlorobenzidine	3.9	1.2	5.7		NA			NA			U *1	0.05		U *1	0.05
3-Nitroaniline	NS	NS	NS		NA			NA			U.	0.079		U	0.079
4,6-Dinitro-2-methylphenol	NS	NS	NS		NA			NA			U	0.14		U	0.14
4-Bromophenyl phenyl ether	NS	NS	NS		NA			NA			U	0.013		U	0.013
4-Chloro-3-methylphenol	NS	NS	NS		NA			NA			U	0.019		U	0.019
4-Chloroaniline	0.23	2.7	13 NS		NA		-	NA			U *1	0.059		U *1	0.059
4-Chlorophenyl phenyl ether 4-Methylphenol	NS 0.75	NS 630	9,100		NA NA			NA NA			U	0.012		U	0.012 0.021
4-Nitroaniline	NS NS	27	130		NA			NA			U	0.021		U	0.038
4-Nitrophenol	NS	NS	NS		NA			NA			U	0.054		U	0.054
Acenaphthene	NS	3,600	50,000		NA			NA		0.29	J	0.0095		U	0.0095
Acenaphthylene	NS	NS	NS		NA			NA		0.015	J	0.0095		U	0.0095
Acetophenone	3.6	7,800	130,000		NA			NA			U	0.016		U	0.016
Anthracene	NS	18,000	250,000		NA			NA		0.57		0.01		U	0.01
Atrazine	0.33	220	3,200		NA			NA NA			U	0.02		U	0.02
Benzaldehyde Benzidine	NS NS	170 NS	910 NS		NA NA			NA			U U *1	0.055		U U *1	0.055
Benzo[a]anthracene	0.71	5.1	23		NA			NA		0.86	0 .	0.025		U	0.025
Benzo[a]pyrene	NS	0.51	2.3		NA			NA		0.72		0.0089		U	0.0089
Benzo[b]fluoranthene	NS	5.1	23		NA			NA		0.82		0.0086		U	0.0086
Benzo[g,h,i]perylene	NS	NS	NS		NA			NA		0.4	*+	0.0098		U *+	0.0098
Benzo[k]fluoranthene	NS	51	230		NA			NA		0.38		0.0065		U	0.0065
Bis(2-chloroethoxy)methane	NS	190	2,700		NA			NA			U	0.026		U	0.026
Bis(2-chloroethyl)ether	0.33	0.63	3.3		NA			NA		0.072	U	0.012		U	0.012
Bis(2-ethylhexyl) phthalate Butyl benzyl phthalate	14 29	39 290	180 1,300		NA NA			NA NA		0.073	J	0.018		U	0.018
Caprolactam	16	290	1,300		NA			NA			U	0.010		U	0.052
Carbazole	NS	NS	NS		NA			NA		0.25	J	0.013		U	0.013
Chrysene	NS	510	2,300		NA			NA		0.83		0.014		U	0.014
Dibenz(a,h)anthracene	NS	0.51	2.3		NA			NA		0.085		0.014		U	0.014
Dibenzofuran	NS	NS	NS		NA	-		NA		0.19	J	0.011		U	0.011
Diethyl phthalate	44	51,000	730,000		NA			NA			U	0.011		U	0.011
Dimethyl phthalate Di-n-butyl phthalate	NS	NS 6300	NS 01 000		NA			NA NA			U	0.076	0.004	U	0.076
Di-n-butyl phthalate Di-n-octyl phthalate	NS NS	6300 630	91,000 9,100		NA NA		-	NA NA			U	0.013	0.021	J	0.013
Fluoranthene	NS	2,400	33,000		NA			NA		2.1	J	0.018		U	0.018
Fluorene	NS	2,400	33,000		NA			NA		0.3	J	0.0097		U	0.0098
Hexachlorobenzene	0.17	0.43	2.3		NA			NA			U	0.016		U	0.016
Hexachlorobutadiene	0.17	8.9	47		NA			NA			U	0.0071		U	0.0071
Hexachlorocyclopentadiene	2.5	2.7	7,800		NA			NA			U *+	0.029		U *+	0.029
Hexachloroethane	0.17	17	91		NA		<u> </u>	NA			U	0.011	ļ	U	0.011
Indeno[1,2,3-cd]pyrene	NS 0.00	5.1	23		NA		 	NA		0.39	١	0.013	 	U	0.013
Isophorone Naphthalene	0.23 19	570 5.7	2,700 27		NA NA		 	NA NA		0.1	J	0.096 0.0057	 	U	0.096 0.0058
Napntnaiene Nitrobenzene	0.17	7.5	36		NA		1	NA NA		0.1	U	0.0057	1	U	0.0058
N-Nitrosodimethylamine	NS NS	NS	NS NS		NA		1	NA		-	U	0.018	-	U	0.019
N-Nitrosodi-n-propylamine	0.17	0.17	0.36		NA		1	NA		1	U	0.024	1	U	0.024
N-Nitrosodiphenylamine	1.1	110	520		NA		1	NA			U	0.027		U	0.027
Pentachlorophenol	0.33	1.0	4.4		NA			NA			U	0.068		U	0.068
Phenanthrene	NS	NS	NS		NA			NA		2.5		0.014		U	0.014
Phenol	21	19,000	270,000		NA			NA			U	0.012		U	0.012
Pyrene SVOC TIC Conc. (# TICs)	NS	1,800	25,000		NA		<u> </u>	NA		1.8	—	0.0083		U	0.0083
EVI// IC TIC Cone (# TICe)	NS	NS	NS	Ī	NA		1	NA	ı	1.27 (4)	1		0.37(1)		

mg/kg = Milligrams per kilogram

ft bgs = feet below ground surface Q = Qualifier; MDL = Method Detection Limit

NS = No standard

U = Analyzed for but Not Detected at the MDL

Exceeds 2021 NJ SRS for the Migration to Groundwater Pathway (SRSMGW)

Exceeds 2021 NJ Non-Residential Soil Remediation Standard (NRSRS)

Exceeds 2021 RSRS and 2021 SRSMGW

* = NRSRS that exceeds SRSMGW

- p = %RPD between the primary and confirmation column/detector is >40%. Lower value reported.
- F1 = MS and/or MSD recovery exceeds control limits.
- *+ = LCS and/or LCSD is outside acceptance limits, high biased.
- *1 = LCS/LCSD RPD exceeds control limits.
- B = Compound was found in the blank and sample.
- J = Concentration detected at a value below the RL and above the MDL

Page 1 of 2

TABLE 3B SEPTEMBER 2024 SOIL ANALYTICAL RESULTS - SEMIVOLATILES "S. YAFFA AND SONS, INC." 616 CHESTNILT STREET ET AI 08103 881

616 CHESINUI SIREELELAL.,
CITY OF CAMDEN, CAMDEN COUNTY, NJ
BLOCK 331 / NJDEP CSRRP PI # 02588
Montrose Project # 11595-03

Sample ID: Lab ID: Date Sampled:	2021 NJ	2021 NJ Residential	2021 NJ Non- Residential		3-2024 0-3108 9/5/2			2024-9 -31085 9/5/24	59-2		4-2024 0-3108 9/5/2			-2024- 0-3108 9/5/24	
Sample Depth (ft bgs)	SRSMGW	SRS (RSRS)	SRS		1-1.5			9.5-10			1-1.5			10-10.	
oampio z opin (io ago)			(NRSRS)	Conc	Q	MDL	Conc	Q	MDL	Conc	Q	MDL	Conc	Q	MDL
Semi-Volatile Organic Compounds (n									,						
1,1'-Biphenyl	NS	87	450		U	0.012		U	0.012		U	0.012		U	0.012
1,2,4,5-Tetrachlorobenzene	NS	23	390		U	0.011		U	0.011		U	0.011	ļ	U	0.01
1,2-Diphenylhydrazine	NS 4.0	NS 2.400	NS 52,000		U	0.014		U	0.014		U	0.013		U	0.013
2,2'-oxybis[1-chloropropane]	1.9 26	3,100 1,900	52,000 27,000		U	0.021		U	0.021		U	0.021		U	0.02
2,3,4,6-Tetrachlorophenol 2,4,5-Trichlorophenol	68	6,300	91,000		U	0.023		U	0.024		U	0.023		U	0.023
2,4,6-Trichlorophenol	0.86	49	230		U	0.033		U	0.036	-	U	0.033		U	0.034
2,4-Dichlorophenol	0.00	190	2,700		U	0.022		U	0.048	-	U	0.022		U	0.043
2,4-Dimethylphenol	2.3	1,300	18,000		U*+	0.022		U*+	0.023	-	U*+	0.022	 	U *+	0.021
2,4-Dinitrophenol	0.33	130	1,800		U	0.041		U	0.042		U	0.041		U	0.16
2,4-Dinitrotoluene	NS NS	NS	NS NS		U	0.037		U	0.038		U	0.037		U	0.036
2,6-Dinitrotoluene	NS	NS	NS		U	0.025		U	0.026		U	0.025		U	0.024
2-Chloronaphthalene	NS	4,800	67,000		Ü	0.016		Ü	0.016		Ü	0.016		Ū	0.015
2-Chlorophenol	0.76	390	6,500		U	0.012		U	0.013		U	0.012		U	0.012
2-Methylnaphthalene	3.1	240	3,300		U	0.0097		IJ	0.01		U	0.0096		U	0.0093
2-Methylphenol	0.77	320	4,600		Ü	0.013		U	0.013		U	0.013		U	0.012
2-Nitroaniline	NS	NS	NS		U	0.026		U	0.027		Ü	0.026		U	0.025
2-Nitrophenol	NS	NS	NS		Ü	0.035		Ü	0.036		Ü	0.034		U	0.033
3,3'-Dichlorobenzidine	3.9	1.2	5.7		U *1	0.052		U *1	0.054		U *1	0.052		U *1	0.05
3-Nitroaniline	NS	NS	NS		U	0.082		U	0.084		U	0.081		U	0.079
4,6-Dinitro-2-methylphenol	NS	NS	NS		U	0.14		U	0.15		Ü	0.14		U	0.14
4-Bromophenyl phenyl ether	NS	NS	NS		U	0.014		U	0.014		U	0.014		U	0.013
4-Chloro-3-methylphenol	NS	NS	NS		U	0.019		U	0.02		Ü	0.019		U	0.019
4-Chloroaniline	0.23	2.7	13		U *1	0.061		U *1	0.063		U *1	0.061		U *1	0.059
4-Chlorophenyl phenyl ether	NS	NS	NS		U	0.012		U	0.013		U	0.012		U	0.012
4-Methylphenol	0.75	630	9,100		U	0.022		U	0.022		U	0.021		U	0.021
4-Nitroaniline	NS	27	130		U	0.04		U	0.041		U	0.039		U	0.038
4-Nitrophenol	NS	NS	NS		U	0.056		U	0.058		U	0.056		U	0.054
Acenaphthene	NS	3,600	50,000	0.013	J	0.0098		U	0.01	0.043	J	0.0098		U	0.0095
Acenaphthylene	NS	NS	NS		U	0.0099		U	0.01	0.018	J	0.0098		U	0.0095
Acetophenone	3.6	7,800	130,000		U	0.017		U	0.017		U	0.017		U	0.016
Anthracene	NS	18,000	250,000	0.032	J	0.011		U	0.011	0.11	J	0.01		U	0.01
Atrazine	0.33	220	3,200		U	0.02		U	0.021		U	0.02		U	0.02
Benzaldehyde	NS	170	910		U	0.057		U	0.059		U	0.057		U	0.055
Benzidine	NS	NS	NS		U *1	0.072		U *1	0.075		U *1	0.072		U *1	0.07
Benzo[a]anthracene	0.71	5.1	23	0.17		0.026		U	0.027	0.37		0.026		U	0.025
Benzo[a]pyrene	NS	0.51	2.3	0.16		0.0092		U	0.0095	0.32		0.0091		U	0.0089
Benzo[b]fluoranthene	NS	5.1	23	0.19		0.0089		U	0.0092	0.38		0.0089		U	0.0086
Benzo[g,h,i]perylene	NS	NS	NS	0.11	J *+	0.01		U *+	0.01	0.18	J *+	0.01		U *+	0.0098
Benzo[k]fluoranthene	NS	51	230	0.079		0.0068		U	0.007	0.16		0.0067		U	0.0065
Bis(2-chloroethoxy)methane	NS	190	2,700		U	0.027		U	0.028		U	0.027		U	0.026
Bis(2-chloroethyl)ether	0.33	0.63	3.3		U	0.012		U	0.012		U	0.012		U	0.012
Bis(2-ethylhexyl) phthalate	14	39	180	0.3	J	0.018		U	0.019	0.045	J	0.018		U	0.018
Butyl benzyl phthalate	29	290	1,300	0.13	J	0.016		U	0.017		U	0.016		U	0.016
Caprolactam	16	290	1,300		U	0.054		U	0.055		U	0.053		U	0.052
Carbazole	NS	NS	NS	0.015	J	0.013		U	0.014	0.049	J	0.013		U	0.013
Chrysene	NS	510	2,300	0.16	J	0.015		U	0.015	0.36		0.014		U	0.014
Dibenz(a,h)anthracene	NS	0.51	2.3	0.015	J	0.015		U	0.015	0.041		0.015	<u> </u>	U	0.014
Dibenzofuran	NS	NS	NS		U	0.012		U	0.012	0.021	J	0.011	<u> </u>	U	0.011
Diethyl phthalate	44	51,000	730,000		U	0.011		U	0.011	<u> </u>	U	0.011	<u> </u>	U	0.011
Dimethyl phthalate	NS	NS	NS		U	0.078		U	0.081	<u> </u>	U	0.078	<u> </u>	U	0.076
Di-n-butyl phthalate	NS	6300	91,000	0.083	J	0.013		U	0.013	0.019	J	0.013	<u> </u>	U	0.013
Di-n-octyl phthalate	NS	630	9,100		U	0.018		U	0.019		U	0.018	<u> </u>	U	0.018
Fluoranthene	NS	2,400	33,000	0.32	J	0.012		U	0.012	0.77	<u> </u>	0.012	<u> </u>	U	0.012
Fluorene	NS	2,400	33,000	0.011	J	0.01		U	0.01	0.042	J	0.01	<u> </u>	U	0.0098
Hexachlorobenzene	0.17	0.43	2.3		U	0.016		U	0.017	—	U	0.016	<u> </u>	U	0.016
Hexachlorobutadiene	0.17	8.9	47		U	0.0074		U	0.0076	—	U	0.0073	<u> </u>	U	0.0071
Hexachlorocyclopentadiene	2.5	2.7	7,800		U *+	0.03		U *+	0.031	├	U *+	0.03	 	U *+	0.029
Hexachloroethane	0.17	17	91	0.1	U	0.012		U	0.012	0.10	U	0.012	 	U	0.011
Indeno[1,2,3-cd]pyrene	NS 0.00	5.1	23	0.1	1.	0.013		U	0.014	0.18	ļ.,	0.013	 	U	0.013
Isophorone	0.23	570	2,700	l	U	0.1		U	0.1	₩	U	0.099	 	U	0.096
Naphthalene	19	5.7	27	l	U	0.006		U	0.0062	₩	U	0.0059	 	U	0.0058
Nitrobenzene	0.17	7.5	36	l	U	0.019		U	0.02	₩	U	0.019	 	U	0.019
N-Nitrosodimethylamine	NS 0.47	NS 0.47	NS 0.20	l	U	0.032		U	0.033	₩	U	0.032	 	U	0.031
N-Nitrosodi-n-propylamine	0.17	0.17	0.36	l	U	0.025		U	0.026	₩	U	0.025	 	U	0.024
N-Nitrosodiphenylamine	1.1	110	520		U	0.028		U	0.029	—	U	0.028	 	U	0.027
Pentachlorophenol	0.33	1.0	4.4	0.0	U	0.071		U	0.073	0.01	U	0.07	 	U	0.068
Phenanthrene	NS 21	NS 19,000	NS	0.2	J	0.014		U	0.015	0.61	ļ.,	0.014	 	U	0.014
Phenol		19.000	270,000	1	U	0.013	1	U	0.013	1	U	0.013	1	U	0.012
				0.24	-	0.0000		11	0.0000	0.70		0.0005		11	0.0000
Pyrene SVOC TIC Conc. (# TICs)	NS NS	1,800 NS	25,000 NS	0.31 1.78 (5)	J	0.0086	ND (0)	U	0.0089	0.72 0.35 (1)		0.0085	0.35 (1)	U	0.0083

mg/kg = Milligrams per kilogram ft bgs = feet below ground surface Q = Qualifier; MDL = Method Detection Limit

NS = No standard

NS = No standard
U = Analyzed for but Not Detected at the MDL
Exceeds 2021 NJ SRS for the Migration to Groundwater Pathway (SRSMGW)
Exceeds 2021 NJ Residential Soil Remediation Standard (RSRS)
Exceeds 2021 NJ Non-Residential Soil Remediation Standard (NRSRS)
Exceeds 2021 RSRS and 2021 SRSMGW

* = NRSRS that exceeds SRSMGW

Page 2 of 2 H:\Camden Redevelopment Agency\11595-03 Yaffa Block 331 PAS\Tables\Table 3 - 2024-0905 Soil

TABLE 3C

SEPTEMBER 2024 SOIL ANALYTICAL RESULTS - INORGANICS

"S. YAFFA AND SONS, INC."

616 CHESTNUT STREET ET AL. CITY OF CAMDEN, CAMDEN COUNTY, NJ 08103

BLOCK 331 / NJDEP CSRRP PI # 025881 Montrose Project # 11595-03

Sample ID:				GP-	1-202	4-6-6.5	GP-	1-202	4-8-8.5	GP-2	2-2024	1-1-1.5	GP	-2-202	4-8.5-9
Lab ID:	2021 NJ	2021 NJ	2021 NJ Non-	46	0-3108		46	0-3108		460	-3108		46	0-310	
Date Sampled:	SRSMGW	Residential	Residential SRS (NRSRS)		9/5/2			9/5/2			9/5/2			9/5/2	
Sample Depth (ft bgs):		SKS (KSKS)	SKS (NKSKS)	Conc	Q Q	MDL	Conc	Q Q	MDL	Conc	Q Q	MDL	Conc	0.5- Q	MDL
NJDEP EPH (mg/kg)				Conc	Q	WIDE	Conc	ų į	WIDE	Conc	Q	MDL	COIIC	ų.	WIDE
C10-C12 Aromatics	NS	NS	NS		U	2		U	2		NA			NA	
C12-C16 Aliphatics	NS	NS	NS		U	2		U	2		NA			NA	
C12-C16 Aromatics	NS	NS	NS		U	3		U	3		NA			NA	
C16-C21 Aliphatics C16-C21 Aromatics	NS NS	NS NS	NS NS		U	5		U	5		NA NA			NA NA	
C21-C36 Aromatic	NS	NS	NS		U	8		U	8.1		NA			NA	
C21-C40 Aliphatics	NS	NS	NS		U	7		Ü	7.1		NA			NA	
C9-C12 Aliphatics	NS	NS	NS		U	3		U	3		NA			NA	
Total Aliphatics	NS	NS	NS		U	0.01		U	0.01		NA			NA	
Total Aromatics	NS NS	NS E 200	NS 75.000		U	0.01		U	0.01		NA NA			NA	
Total EPH Total EPH (C9-C40)	NS	5,300 5,300	75,000 75,000		U NA	0.01		NA	0.01	1,200	NA	71		NA U	14
Pesticides (mg/kg)	140	0,000	70,000		14/3			13/3		1,200		- / -		U	
4,4'-DDD	0.47	2.3	11		NA			NA			U	0.0012		U	0.0012
4,4'-DDE	0.47	2.0	11		NA			NA			U	0.0008		U	0.0008
4,4'-DDT	0.67	1.9	9.5		NA			NA			U	0.0012		U	0.0012
Aldrin	0.13	0.041	0.21		NA			NA			U	0.001		U	0.001
alpha-BHC	0.0023	0.086	0.41		NA			NA			U	0.00069		U	0.00069
beta-BHC	0.0046	0.30	1.4		NA			NA			U	0.00076		U	0.00076
Chlordane (technical)	1.4	0.27	1.4		NA		\vdash	NA			U	0.016		U	0.016
delta-BHC	NS 0.024	NS 0.034	NS 0.16		NA NA			NA NA		-	U	0.00041		U	0.00041
Dieldrin Endosulfan I	0.024 NS	0.034 470	0.16 7,800		NA		\vdash	NA			U	0.00088		U	0.00088
Endosulfan II	NS	470	7,800		NA		\vdash	NA		1	U	0.0017		U	0.0017
Endosulfan sulfate	NS	NS	NS NS		NA			NA			U	0.00085		U	0.00085
Endrin	1.6	19	270		NA			NA			U	0.00097		U	0.00097
Endrin aldehyde	NS	NS	NS		NA			NA			U	0.0016		U	0.0016
Endrin ketone	NS	NS	NS		NA			NA			U	0.0013		U	0.0013
gamma-BHC (Lindane)	0.0035	0.57	2.8		NA			NA			U	0.00063		U	0.00063
Heptachlor	0.083	0.15	0.81		NA			NA			U	0.0008		U	0.0008
Heptachlor epoxide	0.081	0.076	0.40		NA			NA			U	0.001		U	0.001
Methoxychlor	NS	320	4,600		NA			NA			U	0.0015		U	0.0015
Toxaphene	6.2	0.49	2.3	<u> </u>	NA			NA			U	0.024		U	0.024
Herbicides (mg/kg)	NC	NC	NC		NIA		1	NIA				0.0074			0.0070
2,4,5-T 2,4-D	NS NS	NS NS	NS NS		NA NA			NA NA			U	0.0071		U	0.0072
Silvex (2,4,5-TP)	NS	NS	NS		NA			NA			U	0.0035		U	0.0035
PCBs (mg/kg)														_	
Aroclor 1016	NS	NS	NS		NA			NA			U	0.036		U	0.018
Aroclor 1221	NS	NS	NS		NA			NA			U	0.036		U	0.018
Aroclor 1232	NS	NS	NS		NA			NA			U	0.036		U	0.018
Aroclor 1242	NS	NS	NS		NA			NA			U	0.036		U	0.018
Aroclor 1248	NS	NS	NS		NA			NA		0.71		0.036		U	0.018
Aroclor 1254	NS	NS	NS		NA			NA			U	0.036		U	0.018
Aroclor 1260	NS	NS	NS		NA			NA			U	0.036		U	0.018
Aroclor 1268	NS	NS	NS		NA			NA		1.6		0.036		U	0.018
Aroclor-1262 Total PCBs	NS 1.6	NS 0.25	NS 1.1		NA NA			NA NA		2.2 *	U	0.036		U	0.018
Metals (mg/kg)	1.0	0.25	1.1		INA			INA		2.2		0.000		U	0.010
Aluminum	NS	78,000	NS		NA			NA		4,760		4.9	4,310		5
Antimony	5.4	31	520		NA			NA		13.1		0.13	0.22	J	0.13
Arsenic	19	19	19		NA			NA		14.5		0.092	22.6*		0.093
Barium	2,100	16,000	260,000		NA			NA		166		0.13	7.8		0.13
Beryllium	0.70	160	2,600		NA			NA		0.21	J	0.051	0.32	J	0.051
Cadmium	1.9	71	1,100		NA			NA		34		0.1	0.1	U	0.1
Calcium	NS	NS	NS		NA			NA		12,400		36.4	328		36.7
Chromium	NS an	NS 23	NS 300		NA NA		\vdash	NA NA		102		0.81	11		0.82
Cobalt Copper	90 910	3,100	390 52,000		NA NA			NA NA		13.3 4,450		0.13 3.3	2.5 7.2		0.13
Iron	NS	3,100 NS	52,000 NS	 	NA		\vdash	NA		83,300		180	15,400		18.2
Lead **	90	200	800		NA			NA		3,040 *		1.8	5.3		0.18
Magnesium	NS	NS	NS		NA			NA		1,650		9.1	979		9.2
Manganese	NS	1,900	31,000		NA			NA		734		0.36	66.1		0.36
Mercury	0.10	23	390		NA			NA		0.63		0.0076	0.017		0.0075
Nickel	48	1,600	26,000		NA			NA		217		0.42	4.7		0.42
Potassium	NS	NS	NS		NA			NA		336		14.5	803	لبلا	14.6
Selenium	11	390	6,500		NA			NA		0.51	J	0.11	0.12	U	0.12
Silver	0.50	390	6,500		NA			NA		1.3		0.08	0.08	U	0.08
Sodium Thallium	NS NS	NS NS	NS NS		NA NA		\vdash	NA NA		164 0.051	J	40.8 0.037	42.9 0.037	J	41.2 0.037
Vanadium	NS NS	390	6,500	 	NA		\vdash	NA NA		20.3	J	0.037	10.6	U	0.037
Zinc	930	23,000	390,000	 	NA		\vdash	NA		1,740		2.7	23.5		2.8
Conventionals (mg/kg)	330	20,000	555,000		,.					.,,,,	_		20.0		
Cyanide, Total	20	47	780		NA			NA		0.49		0.11		U F1	0.13
Hexavalent Chromium, Total	NS	240	20		NA			NA			U	0.84		NA	
mg/kg = Milligrams per kilogram							•					<u> </u>			

ft bgs = Feet below ground surface

MDL = Method Detection Limit

Exceeds 2021 NJ SRS for the Migration to Groundwater Pathway (SRSMGW) Exceeds 2021 NJ Residential Soil Remediation Standard (RSRS)

Exceeds 2021 NJ Non-Residential Soil Remediation Standard (NRSRS)

Page 1 of 2 H:lCamden Redevelopment Agency\11595-03 Yaffa Block 331 PAS\Tables\Table 3 - 2024-0905 Soil

Q = Qualifier; NS = No standard; NA = Not analyzed

U = Analyzed for but Not Detected at the MDL

J = Concentration detected at a value below the RL and above the MDL

Exceeds SRSMGW and RSRS

* = NRSRS that exceeds SRSMGW

^{** =} NJAC 7:26D was amended on May 6, 2024. The lead ingestion-dermal exposure pathway was updated from 400 mg/kg to 200 mg/kg.

F1 = MS and/or MSD recovery exceeds control limits.; p = The %RPD between the primary and confirmation column/detector is >40%. Lower value reported.

^{*+ =} LCS and/or LCSD is outside acceptance limits, high biased.; *1 = LCS/LCSD RPD exceeds control limits.; B = Compound was found in the blank and sample.

TABLE 3C

SEPTEMBER 2024 SOIL ANALYTICAL RESULTS - INORGANICS "S. YAFFA AND SONS, INC."

616 CHESTNUT STREET ET AL. CITY OF CAMDEN, CAMDEN COUNTY, NJ 08103

BLOCK 331 / NJDEP CSRRP PI # 025881 Montrose Project # 11595-03

Sample ID: Lab ID:					3-2024 0-3108	1-1-1.5	GP-3-2	2024-9 31085			1-2024)-3108	1-1-1.5		-2024- 0-3108	10-10.5
Date Sampled:	2021 NJ	2021 NJ Residential	2021 NJ Non- Residential	460	9/5/2			9/5/24	19-2	460	9/5/2		460	9/5/2	
Sample Depth (ft bgs):	SRSMGW	SRS (RSRS)	SRS (NRSRS)		1-1.5			.5-10			1-1.5			10-10.	
				Conc	Q	MDL	Conc	Q	MDL	Conc	Q	MDL	Conc	Q	MDL
NJDEP EPH (mg/kg)	110	110	110												
C10-C12 Aromatics	NS	NS	NS		NA			NA			NA			NA	
C12-C16 Aliphatics	NS	NS	NS		NA			NA			NA			NA	
C12-C16 Aromatics	NS	NS	NS		NA			NA			NA			NA	
C16-C21 Aliphatics	NS	NS	NS NS		NA NA			NA NA			NA NA			NA NA	
C16-C21 Aromatics	NS	NS													
C21-C36 Aromatic	NS	NS	NS		NA			NA			NA			NA	
C21-C40 Aliphatics C9-C12 Aliphatics	NS NS	NS NS	NS NS		NA NA			NA NA			NA NA			NA NA	
Total Aliphatics	NS	NS	NS		NA			NA			NA			NA	
Total Aromatics	NS	NS	NS		NA			NA			NA			NA	
Total EPH	NS	5,300	75,000		NA			NA			NA			NA	
Total EPH (C9-C40)	NS	5,300	75,000	240	INA	15		U	15	330	INA	15		U	14
Pesticides (mg/kg)	INO	3,300	73,000	240		10		0	10	330		10		- 0	14
4,4'-DDD	0.47	2.3	11	1	U	0.0012		U	0.0012		U	0.0012		U	0.0012
										0.000	0				
4,4'-DDE	0.47	2.0	11		U	0.00083		U	0.00085	0.083	-	0.00082		U	0.0008
4,4'-DDT	0.67	1.9	9.5		U	0.0013		U	0.0013	0.12	<u>.</u>	0.0013		U	0.0012
Aldrin	0.13	0.041	0.21		U	0.0011		U	0.0011		U	0.001		U	0.001
alpha-BHC	0.0023	0.086	0.41		U	0.00071		U	0.00073		U	0.00071		U	0.00069
beta-BHC	0.0046	0.30	1.4		U	0.00078		U	0.00081		U	0.00078		U	0.00076
Chlordane (technical)	1.4	0.27	1.4		U	0.017		U	0.017		٦	0.017		U	0.016
delta-BHC	NS	NS	NS		U	0.00043		U	0.00044		U	0.00043		U	0.00042
Dieldrin	0.024	0.034	0.16		U	0.00091		U	0.00094		U	0.0009		U	0.0008
Endosulfan I	NS	470	7,800		U	0.0011		U	0.0011		U	0.0011		U	0.001
Endosulfan II	NS	470	7,800		U	0.0018		U	0.0019		U	0.0018		U	0.0017
Endosulfan sulfate	NS	NS	NS		U	0.00088		U	0.00091		U	0.00087		U	0.00085
Endrin	1.6	19	270		Ü	0.001		Ü	0.001		Ü	0.00007		Ü	0.00097
Endrin aldehyde	NS	NS	NS NS	1	U	0.0017		U	0.0017		U	0.001		U	0.00097
Endrin aldenyde Endrin ketone	NS NS	NS NS	NS		U	0.0017		U	0.0017		U	0.0018		U	0.0018
				-											
gamma-BHC (Lindane)	0.0035	0.57	2.8		U	0.00065		U	0.00067		U	0.00064		U	0.00063
Heptachlor	0.083	0.15	0.81		U	0.00083		U	0.00085		U	0.00082		U	0.0008
Heptachlor epoxide	0.081	0.076	0.40		U	0.001		U	0.0011		U	0.001		U	0.001
Methoxychlor	NS	320	4,600		U	0.0016		U	0.0016		U	0.0016		U	0.0015
Toxaphene	6.2	0.49	2.3		U	0.025		U	0.026		U	0.025		U	0.025
Herbicides (mg/kg)															
2,4,5-T	NS	NS	NS		U	0.0074		U	0.0076		U	0.0073		U	0.0072
2,4-D	NS	NS	NS		U	0.013		U	0.013		U	0.013		U	0.012
Silvex (2,4,5-TP)	NS	NS	NS		U	0.0036		U	0.0037		U	0.0036		U	0.0035
PCBs (mg/kg)															
Aroclor 1016	NS	NS	NS	1	U	0.19		U	0.019		U	0.018		U	0.018
Aroclor 1221								U	0.019		U	0.018			0.018
															0.016
	NS	NS	NS		U	0.19								U	0.040
Aroclor 1232	NS	NS	NS		U	0.19		U	0.019		U	0.018		U	0.018
Aroclor 1232 Aroclor 1242	NS NS	NS NS	NS NS		U	0.19 0.19		U	0.019 0.019			0.018 0.018		U	0.018
Aroclor 1232 Aroclor 1242 Aroclor 1248	NS NS NS	NS NS NS	NS NS NS		U U U	0.19 0.19 0.19		υυυ	0.019 0.019 0.019	0.25	U	0.018 0.018 0.018		U U U	0.018 0.018
Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254	NS NS NS	NS NS NS	NS NS NS		U	0.19 0.19 0.19 0.19		υ υ υ	0.019 0.019 0.019 0.019	0.25	U U U	0.018 0.018 0.018 0.018		U U U	0.018 0.018 0.018
Aroclor 1232 Aroclor 1242 Aroclor 1248	NS NS NS NS	NS NS NS NS	NS NS NS NS	5.2	U U U	0.19 0.19 0.19 0.19 0.19			0.019 0.019 0.019 0.019 0.019	0.25	U U U	0.018 0.018 0.018 0.018 0.018		U U U U	0.018 0.018 0.018 0.018
Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1268	NS NS NS NS NS	NS NS NS NS NS	NS NS NS NS NS	5.2	U U U U	0.19 0.19 0.19 0.19 0.19 0.19			0.019 0.019 0.019 0.019 0.019 0.019		U U U	0.018 0.018 0.018 0.018 0.018 0.018		U U U U U	0.018 0.018 0.018 0.018 0.018
Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1268 Aroclor 1268	NS NS NS NS NS NS NS	NS NS NS NS NS NS NS NS	NS NS NS NS NS NS NS NS		U U U	0.19 0.19 0.19 0.19 0.19 0.19 0.19			0.019 0.019 0.019 0.019 0.019 0.019 0.019	0.39	U U U	0.018 0.018 0.018 0.018 0.018 0.018 0.018		U U U U U	0.018 0.018 0.018 0.018 0.018 0.018
Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1268	NS NS NS NS NS	NS NS NS NS NS	NS NS NS NS NS	5.2 * 5.2 *	U U U U	0.19 0.19 0.19 0.19 0.19 0.19			0.019 0.019 0.019 0.019 0.019 0.019		U U U U	0.018 0.018 0.018 0.018 0.018 0.018		U U U U U	0.018 0.018 0.018 0.018 0.018
Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1268 Aroclor 1268	NS NS NS NS NS NS NS	NS NS NS NS NS NS NS NS	NS NS NS NS NS NS NS NS		U U U U	0.19 0.19 0.19 0.19 0.19 0.19 0.19			0.019 0.019 0.019 0.019 0.019 0.019 0.019	0.39	U U U U U	0.018 0.018 0.018 0.018 0.018 0.018 0.018		U U U U U	0.018 0.018 0.018 0.018 0.018 0.018
Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1268 Aroclor 1268 Total PCBs	NS NS NS NS NS NS NS	NS NS NS NS NS NS NS NS	NS NS NS NS NS NS NS NS		U U U U	0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19	3,930		0.019 0.019 0.019 0.019 0.019 0.019 0.019	0.39	U U U U U	0.018 0.018 0.018 0.018 0.018 0.018 0.018	3,510	U U U U U	0.018 0.018 0.018 0.018 0.018 0.018
Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1268 Aroclor-1262 Total PCBs Metals (mg/kg) Aluminum	NS NS NS NS NS NS NS 1.6	NS NS NS NS NS NS NS NS O.25	NS	5.2 *	U U U U	0.19 0.19 0.19 0.19 0.19 0.19 0.19	3,930		0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019	0.39	U U U U U	0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018	3,510	U U U U U	0.018 0.018 0.018 0.018 0.018 0.018 0.018
Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1260 Aroclor 1260 Total PCBs Metals (mg/kg) Aluminum Antimony	NS N	NS NS NS NS NS NS NS NS NS 31	NS N	5.2 * 9,960 0.61	U U U U U	0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19			0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 5.6 0.15	0.39 0.63 22,400 2.7	U U U U U	0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018		0 0 0 0 0 0 0	0.018 0.018 0.018 0.018 0.018 0.018 0.018 4.7
Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1254 Aroclor 1260 Aroclor 1268 Aroclor-1262 Total PCBs Metals (mg/kg) Aluminum Antimony Arsenic	NS N	NS NS NS NS NS NS NS 0.25	NS 1.1	9,960 0.61 6.9	U U U U U	0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19	6.9		0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 5.6 0.15	0.39 0.63 22,400 2.7 9.9	U U U U U	0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018	1.2	0 0 0 0 0 0 0	0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 4.7 0.13
Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1254 Aroclor 1260 Aroclor 1260 Aroclor 1268 Aroclor-1262 Total PCBs Metals (mg/kg) Aluminum Antimony Arsenic Barium	NS NS NS NS NS NS NS NS 1.6	NS NS NS NS NS NS NS 10.25 78,000 31 19 16,000	NS N	9,960 0.61 6.9 109	U U U U U	0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.11 0.14	6.9 6.3		0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.015 0.15	0.39 0.63 22,400 2.7 9.9 128	U U U U P P	0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018	1.2		0.018 0.018 0.018 0.018 0.018 0.018 0.018 4.7 0.13 0.088
Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1254 Aroclor 1260 Aroclor 1260 Aroclor 1262 Total PCBs Metals (mg/kg) Aluminum Antimony Arsenic Beryllium	NS N	NS NS NS NS NS NS NS 0.25	NS N	9,960 0.61 6.9 109 0.47	U U U U U	0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.11 0.14 0.14 0.055	6.9	~ C C C C C C	0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 5.6 0.15 0.11 0.15 0.059	0.39 0.63 22,400 2.7 9.9 128 0.27	U U U U U	0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.14 0.095 0.13 0.053	1.2		0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.019 0.019 0.019
Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1254 Aroclor 1260 Aroclor 1260 Aroclor 1262 Total PCBs Metals (mg/kg) Altimium Antimony Arsenic Beryllium Cadmium	NS 1.6	NS N	NS N	9,960 0.61 6.9 109 0.47 1.7	U U U U U	0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.11 0.14 0.055 0.11	6.9 6.3 0.31		0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 5.6 0.15 0.11 0.15 0.059	0.39 0.63 22,400 2.7 9.9 128 0.27 2.5	U U U U P P	0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.14 0.095 0.13 0.053 0.1	1.2 8.7 0.19		0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.013 0.018 0.013 0.088 0.12 0.049
Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1260 Aroclor 1260 Total PCBs Metals (mg/kg) Aluminum Antimony	NS N	NS NS NS NS NS NS NS 0.25	NS N	9,960 0.61 6.9 109 0.47 1.7 20,900	U U U U U	0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.14 0.14 0.055 0.11 39.4	6.9 6.3	~ C C C C C C	0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.15 0.15 0.15 0.059 0.12	0.39 0.63 22,400 2.7 9.9 128 0.27	U U U U P P	0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.014 0.095 0.13 0.053 0.1	1.2		0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.019 0.049 0.097 34.9
Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1260 Aroclor 1260 Aroclor 1262 Total PCBs Metals (mg/kg) Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Chromium	NS N	NS N	NS N	9,960 0.61 6.9 109 0.47 1.7 20,900 28.6	U U U U U	0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.14 0.14 0.14 0.055 0.11 0.055	6.9 6.3 0.31 208 9.1	~ C C C C C C	0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.15 0.15 0.15 0.15 0.15 0.15 0.19	0.39 0.63 22,400 2.7 9.9 128 0.27 2.5 6,190 47.6	U U U U P P	0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.14 0.095 0.13 0.053 0.1 0.053	1.2 8.7 0.19 282 6.9		0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.013 0.088 0.12 0.049 0.097 34.9
Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1260 Aroclor 1260 Aroclor 1260 Total PCBs Metals (mg/kg) Aluminum Antimony Arsenic Barium Beryllium Cadmium Cadmium Calcium Chromium Cobalt	NS N	NS NS NS NS NS NS 0.25 78,000 31 19 16,000 160 71 NS S	NS 1.1 NS 520 19 260,000 2,600 1,100 NS NS 390	9,960 0.61 6.9 109 0.47 1.7 20,900 28.6 6.9	U U U U U	0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.14 0.14 0.055 0.11 0.88 0.14	6.9 6.3 0.31 208 9.1 2.4	~ C C C C C C	0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.15 0.15 0.15 0.15 0.12 41.8 0.93 0.15	0.39 0.63 22,400 2.7 9.9 128 0.27 2.5 6,190 47.6 6.9	U U U U P P	0.018 0.019 0.018 0.019 0.	1.2 8.7 0.19 282 6.9 1.6		0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.013 0.088 0.12 0.049 0.097 34.9 0.78 0.13
Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1260 Aroclor 1260 Aroclor 1260 Total PCBs Metals (mg/kg) Aluminum Antimony Arsenic Barium Beryllium Cadmium Cadmium Calcium Chromium Cobalt	NS N	NS NS NS NS NS NS NS 0.25 78,000 31 19 16,000 160 71 NS NS NS NS NS NS NS NS NS NS NS NS NS	NS 1.1 NS 520 19 260,000 2,600 1,100 NS	9,960 0.61 6.9 109 0.47 1.7 20,900 28.6 6.9 86.6	U U U U U	0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.14 0.14 0.055 0.11 0.85 0.14 0.10 0.15 0.11 0.10 0.19	6.9 6.3 0.31 208 9.1 2.4 5.5	~ C C C C C C	0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.15 0.15 0.15 0.12 41.8 0.93 0.15 0.15 0.059	0.39 0.63 22,400 2.7 9.9 128 0.27 2.5 6,190 47.6 6.9 776	U U U U P P	0.018 0.019 0.	1.2 8.7 0.19 282 6.9 1.6 4		0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 4.7 0.13 0.088 0.12 0.049 0.097 34.9 0.78 0.73 0.73
Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1260 Aroclor 1260 Aroclor 1262 Total PCBs Metals (mg/kg) Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Chromium	NS N	NS NS NS NS NS NS 0.25 78,000 31 19 16,000 160 71 NS S	NS 1.1 NS 520 19 260,000 2,600 1,100 NS NS 390	9,960 0.61 6.9 109 0.47 1.7 20,900 28.6 6.9	U U U U U	0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.14 0.14 0.055 0.11 0.88 0.14	6.9 6.3 0.31 208 9.1 2.4	~ C C C C C C	0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.15 0.15 0.15 0.15 0.12 41.8 0.93 0.15	0.39 0.63 22,400 2.7 9.9 128 0.27 2.5 6,190 47.6 6.9	U U U U P P	0.018 0.019 0.018 0.019 0.	1.2 8.7 0.19 282 6.9 1.6		0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.013 0.088 0.12 0.049 0.097 34.9 0.78 0.13
Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1254 Aroclor 1260 Aroclor 1260 Aroclor 1268 Aroclor 1262 Total PCBs Metals (mg/kg) Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper	NS N	NS NS NS NS NS NS NS 0.25 78,000 31 19 16,000 160 71 NS NS NS NS NS NS NS NS NS NS NS NS NS	NS 1.1 NS 520 19 260,000 2,600 1,100 NS	9,960 0.61 6.9 109 0.47 1.7 20,900 28.6 6.9 86.6	U U U U U	0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.14 0.14 0.055 0.11 0.85 0.14 0.10 0.15 0.11 0.10 0.19	6.9 6.3 0.31 208 9.1 2.4 5.5	~ C C C C C C	0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.15 0.15 0.15 0.12 41.8 0.93 0.15 0.15 0.059	0.39 0.63 22,400 2.7 9.9 128 0.27 2.5 6,190 47.6 6.9 776	U U U U P P	0.018 0.019 0.	1.2 8.7 0.19 282 6.9 1.6 4		0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 4.7 0.13 0.088 0.12 0.049 0.097 34.9 0.78 0.73 0.73
Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1260 Aroclor 1260 Aroclor 1262 Total PCBs Metals (mg/kg) Aluminum Antimony Arsenic Barium Beryllium Cadmium Cadmium Calolium Chromium Cobalt Coopper	NS N	NS N	NS N	9,960 0.61 6.9 109 0.47 1.7 20,900 28.6 6.9 86.6 30,100	U U U U U	0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 5.3 0.14 0.1 0.14 0.055 0.11 0.11 0.88 0.14 0.88 0.14	6.9 6.3 0.31 208 9.1 2.4 5.5	~ C C C C C C	0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.15 0.15 0.11 0.15 0.12 41.8 0.93 0.15 0.38	0.39 0.63 22,400 2.7 9.9 128 0.27 2.5 6,190 47.6 6.9 776 38,700	U U U U P P	0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.013 0.013 0.013 0.013 0.04 0.095 0.13 0.05 0.13 0.05 0.018 0.018	1.2 8.7 0.19 282 6.9 1.6 4 5,480		0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 4.7 0.13 0.088 0.12 0.049 0.097 34.9 0.73 0.73 0.73
Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1260 Aroclor 1260 Aroclor 1262 Total PCBs Metals (mg/kg) Altuminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper	NS N	NS N	NS 1.1 NS 520 19 260,000 2,600 1,100 NS NS 390 52,000 NS 800	9,960 0.61 6.9 109 0.47 1.7 20,900 28.6 6.9 86.6 30,100 258	U U U U U	0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 5.3 0.14 0.055 0.11 0.88 0.14 0.88 0.14 0.95 0.19	6.9 6.3 0.31 208 9.1 2.4 5.5 10,400 3.5	~ C C C C C C	0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 5.6 0.15 0.15 0.059 0.12 41.8 0.93 0.15 0.38 20.7 0.21	0.39 0.63 22,400 2.7 9.9 128 0.27 2.5 6,190 47.6 6.9 776 38,700 351	U U U U P P	0.018 0.019 0.053 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.019 0.	1.2 8.7 0.19 282 6.9 1.6 4 5,480 3		0.018 0.018 0.018 0.018 0.018 0.018 0.018 4.7 0.13 0.088 0.12 0.049 0.497 34.9 0.78 0.13 0.32 0.13 0.12
Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1254 Aroclor 1260 Aroclor 1260 Aroclor 1268 Metals (mg/kg) Aluminum Antimony Arsenic Barium Beayllium Calcium Chomium Chomium Cobalt Copper Iron Lead *** Magnesium Magnesium Manganese	NS N	NS N	NS N	9,960 0.61 6.9 109 0.47 1.7 20,900 28.6 6.9 86.6 30,100 258 11,100	U U U U U	0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.14 0.14 0.055 0.111 39.4 0.88 0.14 0.36 19.5 0.19 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.	6.9 6.3 0.31 208 9.1 2.4 5.5 10,400 3.5 1,090	~ C C C C C C	0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.015 0.15 0.11 0.15 0.1	0.39 0.63 22,400 2.7 9.9 128 0.27 2.5 6,190 47.6 6.9 776 38,700 351 1,470	U U U U P P	0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.14 0.095 0.13 0.053 0.1 37.7 0.84 0.14 0.34 0.14 0.34 0.14 0.34 0.14 0.34 0.14 0.34 0.14 0.34 0	1.2 8.7 0.19 282 6.9 1.6 4 5,480 3		0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 4.7 0.13 0.088 0.12 0.049 0.097 34.9 0.78 0.13 0.32 17.3 0.32
Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1260 Aroclor 1260 Aroclor 1260 Aroclor 1260 Aroclor 1262 Total PCBs Metals (mg/kg) Altuminum Antimony Arsenic Barrium Beryllium Cadmium Calclium Chromium Cobalt Copper Tron Lead ** Magnesium Manganese Mercury	NS N	NS N	NS N	9,960 0.61 6.9 109 0.47 1.7 20,900 28.6 6.9 86.6 30,100 258 11,100 261 0.65	U U U U U	0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.14 0.1 0.14 0.055 0.11 39.4 0.14 0.36 19.5 0.19	6.9 6.3 0.31 208 9.1 2.4 5.5 10,400 3.5 1,090 58.7		0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.015 0.15 0.15 0.15 0.15 0.15 0.15 0.21 41.8 0.93 0.15 0.38 20.7 0.21 10.5 0.41	0.39 0.63 22,400 2.7 9.9 128 0.27 2.5 6,190 47.6 6,9 776 38,700 351 1,470 279 0.81	U U U U P P	0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.013 0.014 0.095 0.13 0.053 0.1 37.7 0.84 0.14 0.34 18.7 0.19 9.4 0.37 0.0083	1.2 8.7 0.19 282 6.9 1.6 4 5,480 3 999 30.3		0.018 0.018 0.018 0.018 0.018 0.018 0.018 4.7 0.13 0.088 0.12 0.049 0.097 34.9 0.78 0.13 0.35 0.35 0.35 0.35
Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1254 Aroclor 1254 Aroclor 1260 Aroclor 1260 Aroclor 1260 Aroclor 1262 Total PCBs Metals (mg/kg) Aluminum Antimony Arsenic Barium Beryllium Cadmium Cadmium Calcium Chromium Cobalt Copper Iron Lead ** Magnaese Mercury Nickel	NS N	NS N	NS 1.1 NS 520 19 260,000 2,600 1,100 NS NS 390 52,000 NS 800 NS 31,000 390 26,000	9,960 0.61 6.9 109 0.47 1.7 20,900 28.6 6.9 86.6 30,100 258 11,100 261 0.65	U U U U U	0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.10 0.14 0.1 0.055 0.11 39.4 0.36 19.5 0.19 0.9 0.9 0.9 0.9 0.19	6.9 6.3 0.31 208 9.1 2.4 5.5 10,400 3.5 1,090 58.7		0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.15 0.11 0.15 0.11 0.15 0.38 20.7 0.21 10.5 0.48	0.39 0.63 22,400 2.7 9.9 128 0.27 2.5 6,190 47.6 6.9 73 38,700 351 1,470 279 0.81 54.9	U U U U P P	0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.014 0.095 0.13 0.053 0.1 37.7 0.84 0.14 0.34 18.7 0.19 9.4 0.30 0.018	1.2 8.7 0.19 282 6.9 1.6 4 5,480 3 999 30.3		0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.012 0.049 0.097 34.9 0.78 0.13 0.32 17.3 0.17 8.8 0.32
Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1254 Aroclor 1260 Aroclor 1260 Aroclor 1260 Aroclor 1262 Total PCBs Metals (mg/kg) Aluminum Antimony Arsenic Barium Beryllium Cadmium Cadmium Chromium Chagnese Magnese	NS N	NS N	NS 1.1 NS 520 19 260,000 2,600 1,100 NS	9,960 0.61 6.9 109 1.7 20,900 28.6 6.9 86.6 30,100 258 11,100 261 0.65 25.1 2,360	UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU	0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.14 0.14 0.055 0.11 39.4 0.88 0.14 0.36 19.5 0.19 0.9 0.19	6.9 6.3 0.31 208 9.1 2.4 5.5 10,400 3.5 1,090 58.7 6		0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.015 0.15 0.11 0.15 0.059 0.12 41.8 0.93 0.15 0.38 20.7 0.21 10.5 0.41 0.085 0.48	0.39 0.63 22,400 2.7 9.9 128 0.27 2.5 6,190 47.6 6.9 776 38,700 351 1,470 279 0.81 54.9 565	U U U U P P	0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.14 0.095 0.13 0.053 0.1 37.7 0.84 0.34 18.7 0.19 9.4 0.37 0.083 0.44 0.37	1.2 8.7 0.19 282 6.9 1.6 4 5,480 3 999 30.3		0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.012 0.049 0.78 0.78 0.13 0.32 17.3 0.17 8.8 0.35 0.0073 0.44 13.9
Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1248 Aroclor 1254 Aroclor 1264 Aroclor 1260 Aroclor 1260 Aroclor 1260 Aroclor 1260 Aroclor 1262 Total PCBs Metals (mg/kg) Aluminum Antimony Arsenic Barium Beryllium Cadmium Caldium Chromium Cobalt Copper Tron Lead ** Magnesium Manganese Mercury Viickel Potassium Selenium Selenium Selenium Selenium	NS N	NS N	NS N	9,960 0.61 6.9 109 0.47 1.7 20,900 28.6 6.9 86.6 30,100 258 11,100 261 0.65 25.1 2,360 0.26	U U U U U U U U U U U U U U U U U U U	0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.14 0.1 0.14 0.055 0.11 39.4 0.88 0.14 0.39 0.19 0.9 0.19 0	6.9 6.3 0.31 208 9.1 2.4 5.5 10,400 3.5 1,090 58.7		0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.015 0.15 0.15 0.15 0.15 0.15 0.21 1.015 0.21 1.015 0.32 0.41 0.33 0.45 0.45 0.46 0.46 0.48 0.48	0.39 0.63 22,400 2.7 9.9 128 0.27 2.5 6,190 47.6 638,700 351 1,470 279 0.81 54.9 565 0.7	U U U U P P	0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.14 0.095 0.13 0.053 0.1 37.7 0.84 0.14 0.37 0.19 9.4 0.37 0.0083 0.44 15 0.12	1.2 8.7 0.19 282 6.9 1.6 4 5,480 3 999 30.3		0.018 0.018 0.018 0.018 0.018 0.018 0.018 4.7 0.13 0.088 0.12 0.049 0.097 0.78 0.13 0.17 8.8 0.35 0.0073 0.4 13.9 0.11
Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1248 Aroclor 1254 Aroclor 1254 Aroclor 1260 Aroclor 1260 Aroclor 1260 Aroclor 1260 Aroclor 1262 Total PCBs Metals (mg/kg) Alluminum Antimony Arsenic Barium Barium Barium Cadmium Cadmium Calcium Chromium Cobalt Copper Iron Lead ** Magnesium Manganese Mercury Nickel Potassium Selenium Silver	NS N	NS N	NS 1.1 1.1	9,960 0,61 6.9 109 0,47 1.7 20,900 28.6 6.9 8.0 11,100 258 11,100 261 0,65 25.1 2,360 0,26 0,15	UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU	0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.10 0.14 0.1 0.055 0.11 0.36 19.5 0.19 0.9 0.9 0.9 0.9 0.9 0.9 0.19	6.9 6.3 0.31 208 9.1 2.4 5.5 10,400 3.5 1,090 58.7 6		0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.015 0.15 0.11 0.15 0.15 0.15 0.10 0.059 0.12 41.8 0.93 0.15 0.38 20.7 0.21 10.5 0.48 16.6 0.48	0.39 0.63 22,400 2.7 9.9 128 0.27 2.5 6,190 47.6 6.9 776 38,700 351 1,470 279 0.81 54.9 565 0.7 0.44	U U U U P P	0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.14 0.095 0.13 0.14 0.053 0.1 37.7 0.19 9.4 0.34 18.7 0.19 9.4 0.34 11.7 0.098 0.0083 0.0083 0.0083	1.2 8.7 0.19 282 6.9 1.6 4 5,480 3 999 30.3		0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.013 0.088 0.12 0.049 0.097 34.9 0.78 0.32 17.3 0.32 17.3 0.32 17.3 0.04 13.9 0.04 13.9 0.11 0.076
Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1248 Aroclor 1254 Aroclor 1254 Aroclor 1260 Aroclor 1260 Aroclor 1268 Aroclor 1268 Aroclor 1262 Total PCBs Metals (mg/kg) Aluminum Antimony Arsenic Barrium Besryllium Cadrium Cadrium Chromium Cobatt Copper Iron Lead ** Magnesium Manganese Mercury Vickel Potassium Selenium Silver Soldium	NS N	NS N	NS N	9,960 0,61 6,9 109 0,47 1,7 20,900 28,6 6,9 86,6 30,100 258 11,100 261 0,65 25,1 2,360 0,26 0,15 133	U U U U U U U U U U U U U U U U U U U	0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.10 0.19 0.14 0.1 0.055 0.11 39.4 0.36 19.5 0.19 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.19	6.9 6.3 0.31 208 9.1 2.4 5.5 10,400 3.5 1,090 58.7 6		0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.015 0.11 0.15 0.15 0.16 0.15 0.17 0.059 0.12 1.8 0.93 0.15 0.38 20.7 0.21 10.5 0.41 0.0085 0.48 16.6 0.13 0.091	0.39 0.63 22,400 2.7 9.9 128 6,190 47.6 38,700 38,700 279 0.81 564,9 565 0.7 0.44 209	U U U U U P P	0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.013 0.053 0.1 37.7 0.84 0.34 18.7 0.095 0.13 0.053 0.1 0.053 0.1 0.053 0.1 0.053 0.1 0.053 0.1 0.053 0.1 0.053 0.1 0.053 0.1 0.053 0.053 0.1 0.053	1.2 8.7 0.19 282 6.9 1.6 4 5,480 3 999 30.3		0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.12 0.049 0.097 34.9 0.78 0.13 0.32 17.3 0.17 8.8 0.35 0.0073 0.41 0.076 0.077 0.076 0.077 0.076 0.077 0.076 0.077 0.076 0.077
Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1248 Aroclor 1254 Aroclor 1254 Aroclor 1260 Aroclor 1260 Aroclor 1260 Aroclor 1260 Aroclor 1262 Total PCBs Metals (mg/kg) Aluminum Antimony Arsenic Barrium Beryllium Cadmium Caldium Chromium Chromium Cobalt Coopper Toron Lead ** Magnesium Magnesse Mercury Mickel Potassium Selenium Selenium Selenium Sodium Thallium	NS N	NS N	NS N	9,960 0,61 6,9 109 0,47 1,7 20,900 28,6 6,9 86,6 30,100 258 11,100 261 0,65 25,360 0,26 0,15 133 0,19	U U U U U U U U U U U U U U U U U U U	0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.14 0.14 0.055 0.11 0.88 0.14 0.36 0.19 0.9 0.19 0.39 0.0076 0.45 0.12 0.086 0.44 0.086 0.12 0.086 0.12 0.086 0.12 0.086 0.12 0.086 0.12 0.086 0.12 0.086 0.19 0.	6.9 6.3 0.31 208 9.1 2.4 5.5 10,400 3.5 1,090 58.7 6 741 0.13		0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.015 0.15 0.15 0.15 0.15 0.15 0.21 0.15 0.21 0.21 0.38 0.93 0.15 0.38 0.93 0.15 0.38 0.93 0.15 0.38 0.93 0.15 0.38 0.93 0.15 0.38 0.93 0.15 0.93 0.15 0.93 0.15 0.93 0.15 0.93 0.15 0.93 0.15 0.93 0.15 0.93 0.15 0.93 0.15 0.93 0.15 0.93 0.15 0.93 0.15 0.93 0.15 0.93 0.93 0.15 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93	0.39 0.63 22,400 2.7 9.9 9.9 0.27 2.5 6.190 47.6 6.9 38,700 381 1,470 0.81 54.9 0.7 0.44 0.7 0.7 0.7 0.9 0.81 0.7 0.7 0.9 0.81 0.7 0.7 0.81 0.7 0.7 0.81 0.7 0.7 0.81 0.7 0.7 0.81	U U U U P P	0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.14 0.095 0.13 0.053 0.1 0.053 0.1 0.84 0.14 0.34 0.19 0.84 0.19 0.0083 0.0083 0.0083 0.0082 0.0082 0.0082 0.0083 0.0082 0.0082 0.0083 0.0082	1.2 8.7 0.19 282 6.9 1.6 4 5,480 3 999 30.3 704		0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.019 0.088 0.12 0.049 0.097 34.9 0.78 0.13 0.17 8.8 0.35 0.0073 0.4 13.9 0.11 0.076 39.2 0.035
Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1248 Aroclor 1254 Aroclor 1254 Aroclor 1260 Aroclor 1260 Aroclor 1268 Aroclor 1268 Aroclor 1262 Total PCBs Metals (mg/kg) Aluminum Antimony Arsenic Barrium Besryllium Cadrium Cadrium Chromium Cobatt Copper Iron Lead ** Magnesium Manganese Mercury Vickel Potassium Selenium Silver Soldium	NS N	NS N	NS N	9,960 0,61 6,9 109 0,47 1,7 20,900 28,6 6,9 86,6 30,100 258 11,100 261 0,65 25,1 2,360 0,26 0,15 133	U U U U U U U U U U U U U U U U U U U	0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.10 0.19 0.14 0.1 0.055 0.11 39.4 0.36 19.5 0.19 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.19	6.9 6.3 0.31 208 9.1 2.4 5.5 10,400 3.5 1,090 58.7 6		0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.015 0.11 0.15 0.15 0.16 0.15 0.17 0.059 0.12 1.8 0.93 0.15 0.38 20.7 0.21 10.5 0.41 0.0085 0.48 16.6 0.13 0.091	0.39 0.63 22,400 2.7 9.9 128 6,190 47.6 38,700 38,700 279 0.81 564,9 565 0.7 0.44 209	U U U U U P P	0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.013 0.053 0.1 37.7 0.84 0.34 18.7 0.095 0.13 0.053 0.1 0.053 0.1 0.053 0.1 0.053 0.1 0.053 0.1 0.053 0.1 0.053 0.1 0.053 0.1 0.053 0.053 0.1 0.053	1.2 8.7 0.19 282 6.9 1.6 4 5,480 3 999 30.3		0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.12 0.049 0.097 34.9 0.78 0.13 0.32 17.3 0.17 8.8 0.35 0.0074 13.9 0.11 0.076 0.077 0.076 0.076 0.076 0.076 0.077 0.076 0.077
Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1248 Aroclor 1254 Aroclor 1254 Aroclor 1260 Aroclor 1260 Aroclor 1260 Aroclor 1260 Aroclor 1262 Total PCBs Metals (mg/kg) Aluminum Antimony Arsenic Barrium Beryllium Cadmium Caldium Chromium Chromium Cobalt Coopper Toron Lead ** Magnesium Magnesse Mercury Mickel Potassium Selenium Selenium Selenium Sodium Thallium	NS N	NS N	NS N	9,960 0,61 6,9 109 0,47 1,7 20,900 28,6 6,9 86,6 30,100 258 11,100 261 0,65 25,360 0,26 0,15 133 0,19	U U U U U U U U U U U U U U U U U U U	0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.14 0.14 0.055 0.11 0.88 0.14 0.36 0.19 0.9 0.19 0.39 0.0076 0.45 0.12 0.086 0.44 0.086 0.12 0.086 0.12 0.086 0.12 0.086 0.12 0.086 0.12 0.086 0.12 0.086 0.19 0.	6.9 6.3 0.31 208 9.1 2.4 5.5 10,400 3.5 1,090 58.7 6 741 0.13		0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.015 0.15 0.15 0.15 0.15 0.15 0.21 0.15 0.21 0.21 0.38 0.93 0.15 0.38 0.93 0.15 0.38 0.93 0.15 0.38 0.93 0.15 0.38 0.93 0.15 0.38 0.93 0.15 0.93 0.15 0.93 0.15 0.93 0.15 0.93 0.15 0.93 0.15 0.93 0.15 0.93 0.15 0.93 0.15 0.93 0.15 0.93 0.15 0.93 0.15 0.93 0.15 0.93 0.93 0.15 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93	0.39 0.63 22,400 2.7 9.9 9.9 0.27 2.5 6.190 47.6 6.9 38,700 381 1,470 0.81 54.9 0.7 0.44 0.7 0.7 0.7 0.9 0.81 0.7 0.7 0.9 0.81 0.7 0.7 0.81 0.7 0.7 0.81 0.7 0.7 0.81 0.7 0.7 0.81	U U U U U P P	0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.14 0.095 0.13 0.053 0.1 0.053 0.1 0.84 0.14 0.34 0.19 0.84 0.19 0.0083 0.0083 0.0083 0.0082 0.0082 0.0082 0.0083 0.0082 0.0082 0.0083 0.0082	1.2 8.7 0.19 282 6.9 1.6 4 5,480 3 999 30.3 704		0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.019 0.088 0.12 0.049 0.097 34.9 0.78 0.13 0.17 8.8 0.35 0.0073 0.4 13.9 0.11 0.076 39.2 0.035
Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1248 Aroclor 1254 Aroclor 1254 Aroclor 1260 Aroclor 1260 Aroclor 1268 Aroclor 1262 Total PCBs Metals (mg/kg) Aluminum Antimony Arsenic Barium Beryllium Cadmium Cadmium Calcium Chromium Cobalt Copper Iron Lead ** Magnesium Manganese Mercury Nickel Potassium Selenium Selenium Silver Sodium Thallium Vanadium	NS N	NS N	NS N	9,960 0.61 6.9 109 0.47 1.7 20,900 28.6 6.9 86.6 30,100 258 11,100 261 0.65 25.1 2,360 0.26 0.15 133 0.19	U U U U U U U U U U U U U U U U U U U	0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.10 0.14 0.1 0.14 0.14 0.055 0.11 0.14 0.055 0.11 0.19 0.10	6.9 6.3 0.31 208 9.1 2.4 5.5 10,400 3.5 1,090 58.7 6 741 0.13		0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.015 0.15 0.15 0.15 0.15 0.15 0.16 0.17 0.11 0.18 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19	0.39 0.63 22,400 2,7 9,9 9,9 10,27 2,5 6,190 47,6 6,9 776 776 776 776 776 776 776 77	U U U U U P P	0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.14 0.095 0.13 0.053 0.1 37.7 0.84 0.14 0.34 18.7 0.19 9.4 0.37 0.0083 0.44 15 0.0082 42.3 0.038 0.19	1.2 8.7 0.19 282 6.9 1.6 4 5,480 3 999 30.3 5.3 704		0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.12 0.049 0.097 34.9 0.78 0.13 0.32 17.3 0.32 17.3 0.04 13.9 0.076 39.2 0.076 39.2 0.035 0.18
Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1248 Aroclor 1254 Aroclor 1254 Aroclor 1260 Aroclor 1268 Aroclor 1268 Aroclor 1268 Aroclor 1262 Total PCBs Metals (mg/kg) Aluminum Antimony Arsenic Barium Barium Calcium Chromium Cobalt Copper Ton Lead ** Magnesium Manganese Mercury Vickel Potassium Selenium Selenium Siliver Sodium Thaillium Janadium	NS N	NS N	NS N	9,960 0.61 6.9 109 0.47 1.7 20,900 28.6 6.9 86.6 30,100 258 11,100 261 0.65 25.1 2,360 0.26 0.15 133 0.19	U U U U U U U U U U U U U U U U U U U	0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.10 0.14 0.1 0.14 0.14 0.055 0.11 0.14 0.055 0.11 0.19 0.10	6.9 6.3 0.31 208 9.1 2.4 5.5 10,400 3.5 1,090 58.7 6 741 0.13		0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.015 0.15 0.15 0.15 0.15 0.15 0.16 0.17 0.11 0.18 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19	0.39 0.63 22,400 2,7 9,9 9,9 10,27 2,5 6,190 47,6 6,9 776 776 776 776 776 776 776 77	U U U U U P P	0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.14 0.095 0.13 0.053 0.1 37.7 0.84 0.14 0.34 18.7 0.19 9.4 0.37 0.0083 0.44 15 0.0082 42.3 0.038 0.19	1.2 8.7 0.19 282 6.9 1.6 4 5,480 3 999 30.3 5.3 704		0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.12 0.049 0.097 34.9 0.78 0.13 0.32 17.3 0.32 17.3 0.04 13.9 0.076 39.2 0.076 39.2 0.035 0.18

Exceeds 2021 NJ SRS for the Migration to Groundwater Pathway (SRSMGW)

Exceeds 2021 NJ Residential Soil Remediation Standard (RSRS)
Exceeds 2021 NJ Non-Residential Soil Remediation Standard (NRSRS)

H:\Camden Redevelopment Agency\11595-03 Yaffa Block 331 PAS\Tables\Table 3 - 2024-0905 Soil Page 2 of 2

ft bgs = Feet below ground surface

Q = Qualifier; NS = No standard; NA = Not analyzed

U = Analyzed for but Not Detected at the MDL

J = Concentration detected at a value below the RL and above the MDL

MDL = Method Detection Limit

Exceeds SRSMGW and RSRS

* = NRSRS that exceeds SRSMGW

^{** =} NJAC 7:26D was amended on May 6, 2024. The lead ingestion-dermal exposu

F1 = MS and/or MSD recovery exceeds control limits.; p = The %RPD between the p

^{*+ =} LCS and/or LCSD is outside acceptance limits, high biased.; *1 = LCS/LCSD R $\,$

TABLE 3D SEPTEMBER 2024 SOIL ANALYTICAL RESULTS - SPLP "S, YAFFA AND SONS, INC." 616 CHESTNUT STREET ET AL., CITY OF CAMDEN, CAMDEN COUNTY, NJ 08103 BLOCK 331 / NJDEP CSRRP PI # 025881 Montrose Project # 11595-03

Sample ID: Lab ID:		2021 NJ	2021 NJ Non-		1-2024 0-3108			1-2024)-3108	4-8-8.5 859-4		2-2024 1-3108	-1-1.5 59-5		-2-202 0-310	4-8.5-9 859-6		-3-2024 60-3108		GP-3-	-2024-9 -31085			4-2024 0-3108			4-2024 60-310	-10-10.5 R59-8
Date Sampled:	2021 NJ	Residential	Residential		9/5/24			9/5/24			9/5/24			9/5/2		-	9/5/24			9/5/24	J-2	70	9/5/24			9/5/2	
Sample Depth (ft bgs):	SRSMGW		SRS (NRSRS)		6-6.5			8-8.5	5		1-1.5			8.5-	9		1-1.5	;		9.5-10			1-1.5			10-10	.5
				Conc	Q	MDL	Conc	Q	MDL	Conc	Q	MDL	Conc	Q	MDL	Conc	Q	MDL	Conc	Q	MDL	Conc	Q	MDL	Conc	Q	MDL
SPLP Metals (µg/l)											'			'													
Antimony	NS	NS	NS		NA			NA		3		0.76		NA			NA			NA			NA			NA	
Cadmium	NS	NS	NS		NA			NA		0.69	J	0.39		NA			NA			NA			NA			NA	
Cobalt	NS	NS	NS		NA			NA		0.72	J	0.71		NA			NA			NA			NA			NA	
Copper	NS	NS	NS		NA			NA		16.9		2.5		NA			NA			NA		3.8	J	2.5		NA	
.ead	NS	NS	NS		NA			NA		108		0.84		NA			NA			NA			NA			NA	
Nickel	NS	NS	NS		NA			NA		5.9	В	0.91		NA			NA			NA			NA			NA	
Silver	NS	NS	NS		NA			NA			U	0.29		NA			NA			NA			NA			NA	
inc	NS	NS	NS		NA			NA		42.5		6.5		NA			NA			NA			NA			NA	
SPLP																											
Sample Initial Amt (Kg)	NS	NS	NS		NA			NA		0.1001				NA			NA			NA		0.1001				NA	
eachate Final pH (SU)	NS	NS	NS		NA			NA		9.68				NA			NA			NA		9.28				NA	
eachate Final Amt (L)	NS	NS	NS		NA			NA		2				NA			NA			NA		2				NA	
ıg/L = Micrograms per liter																											
Q = Qualifier; ft bgs = Feet below ground surface																											
(g = Kilogram; SU = Standard Units; L = Liters																											
S = No standard; NA = Not analyzed																											
J = Analyzed for but Not Detected at the MDL																											
= Concentration detected at a value below the F	RL and above	the MDL																									
MDL = Method Detection Limit																											
J = Analyzed for but Not Detected at the MDL																											
B = Compound was found in the blank and sample	le																										

Page 1 of 1

TABLE 3E SEPTEMBER 2024 -SPLP PFAS SOIL ANALYTICAL RESULTS "S. YAFFA AND SONS, INC."

616 CHESTNUT STREET ET AL., CITY OF CAMDEN, CAMDEN COUNTY, NJ 08103 BLOCK 331 / NJDEP CSRRP PI # 025881

Montrose Project # 11595-03

Sample ID:	N. 15-5		GP-2-2024-	1-1.5		GP-3-2024-1	-1.5	(3P-4-2024-1	-1.5
Lab ID:	NJDEP		460-31085	9-5		460-310859	9-1		460-310859)-7
Date Sampled:	interim SLRS		9/5/24			9/5/24			9/5/24	
Sample Depth (ft bgs):	σLRS (μg/L)		1-1.5'			1-1.5'			1-1.5'	
	(µg/L)	Result	Q	MDL	Result	Q	MDL	Result	Q	MDL
SPLP Per- and Polyfluoroalkyl Substances (PFAS) (µg/l)										
11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11Cl-PF3OUdS)	NS		U	0.00047		U	0.00047		U	0.00049
1H,1H,2H,2H-Perfluorodecane sulfonic acid (8:2 FTS)	NS	0.0021	J	0.00093		U	0.00095	0.0024	J	0.00097
1H,1H,2H,2H-Perfluorohexane sulfonic acid (4:2 FTS)	NS		U *+	0.0011		U *+	0.0011		U *+	0.0011
IH,1H,2H,2H-Perfluorooctane sulfonic acid (6:2 FTS)	NS	0.004		0.00096		U	0.00098	0.0068		0.001
3-Perfluoroheptylpropanoic acid (7:3 FTCA)	NS		U	0.0023		U	0.0024		U	0.0024
3-Perfluoropentylpropanoic acid (5:3 FTCA)	NS		U	0.0023		U	0.0024		U	0.0024
3-Perfluoropropylpropanoic acid (3:3 FTCA)	NS		U	0.00093		U	0.00095		U	0.0009
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	NS		U	0.00047		U	0.00047		U	0.00049
9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid (9Cl-PF3ONS)	NS		U	0.00047		U	0.00047		U	0.00049
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	0.40		U	0.00043		U	0.00044		U	0.0004
N-ethylperfluorooctane sulfonamide (NEtFOSA)	NS		U	0.00047		U	0.00047		U	0.00049
N-ethylperfluorooctane sulfonamidoethanol (NEtFOSE)	NS		U	0.0023		U	0.0024		U	0.0024
N-ethylperfluorooctanesulfonamidoacetic acid (NEtFOSAA)	NS	0.0072		0.00047		U	0.00047	0.0033		0.00049
N-methylperfluorooctane sulfonamide (NMeFOSA)	NS		U	0.00047		U	0.00047		U	0.00049
N-methylperfluorooctane sulfonamidoethanol (NMeFOSE)	NS		U	0.0028		U	0.0028		U	0.0029
N-methylperfluorooctanesulfonamidoacetic acid (NMeFOSAA)	NS	0.0013	J	0.00062		U	0.00063		U	0.0006
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	NS		U	0.00047		U	0.00047		U	0.00049
Perfluoro (2-ethoxyethane) sulfonic acid (PFEESA)	NS		U	0.00047		U	0.00047		U	0.0004
Perfluoro-3-methoxypropanoic acid (PFMPA)	NS		U	0.00047		U	0.00047		U	0.0004
Perfluoro-4-methoxybutanoic acid (PFMBA)	NS		U	0.00047		U	0.00047		U	0.00049
Perfluorobutanesulfonic acid (PFBS)	NS	0.001	J	0.00047		U	0.00047	0.0009	J	0.00049
Perfluorobutanoic acid (PFBA)	NS	0.016		0.00093	0.003	J	0.00095	0.0027	J	0.0009
Perfluorodecanesulfonic acid (PFDS)	NS	0.0069		0.00047	0.0061		0.00047		U	0.00049
Perfluorodecanoic acid (PFDA)	NS	0.15		0.00047	0.015		0.00047	0.012		0.00049
Perfluorododecanesulfonic acid (PFDoS)	NS		U	0.00047		U	0.00047		U	0.0004
Perfluorododecanoic acid (PFDoA)	NS	0.0047		0.00047		U	0.00047		U	0.0004
Perfluoroheptanesulfonic acid (PFHpS)	NS	0.015		0.00047		U	0.00047	0.001	J	0.00049
Perfluoroheptanoic acid (PFHpA)	NS	0.087		0.00048	0.0067		0.00048	0.0077		0.00049
Perfluorohexanesulfonic acid (PFHxS)	NS	0.028		0.00047	0.0011	J	0.00047	0.0025		0.00049
Perfluorohexanoic acid (PFHxA)	NS	0.054		0.00047	0.01	-	0.00047	0.006		0.0004
Perfluorononanesulfonic acid (PFNS)	NS	0.0006	J	0.00047		U	0.00047		U	0.00049
Perfluorononanoic acid (PFNA)	0.26	0.22		0.00047	0.054		0.00047	0.025		0.00049
Perfluorooctanesulfonamide (PFOSA)	NS	0.079		0.00047	0.0018	J	0.00047	0.0073		0.00049
Perfluorooctanesulfonic acid (PFOS)	0.26	1.17	В	0.00047	0.0016	В	0.00047	0.0073	В	0.0004
			ь			ь			ь	
Perfluorooctanoic acid (PFOA)	0.28	0.61		0.0005	0.032		0.00051	0.039		0.0005
Perfluoropentanesulfonic acid (PFPeS)	NS	0.0021		0.00047		U	0.00047		U	0.00049
Perfluoropentanoic acid (PFPeA)	NS	0.041		0.00056	0.0093		0.00057	0.0054		0.0005
Perfluorotetradecanoic acid (PFTeDA)	NS		U	0.00047		U	0.00047		U	0.0004
Perfluorotridecanoic acid (PFTrDA)	NS	0.0005	J	0.00047		U	0.00047		U	0.0004
Perfluoroundecanoic acid (PFUnA)	NS	0.019		0.00047	0.013		0.00047	0.0028		0.0004
SPLP SUMMARY					,					
Sample Initial Amt (kg)	NS	0.0251		ļ	0.0253			0.0252		
Leachate Final pH (SU)	NS	8.92			5.79		1	7.62		
Leachate Final Amt (L)	NS	0.5			0.5			0.5		
All results are reported in micrograms per liter (µg/l)				EP interim Soil						
NJDEP: New Jersey Department of Enviromental Protection ⊇ = Qualifier				ction Limit exce is the Ground V					attanuation fo	notor (DAE)

U = Analyzed for but Not Detected at the MDL
J = Concentration detected at a value below the RL and above the MDL

MDL = Method Detection Limit ft bgs = feet below ground surface

TABLE 3F SEPTEMBER 2024 -PFAS SOIL ANALYTICAL RESULTS "S. YAFFA AND SONS, INC." 616 CHESTNUT STREET ET AL., CITY OF CAMDEN, CAMDEN COUNTY, NJ 08103

BLOCK 331 / NJDEP CSRRP PI # 025881 Montrose Project # 11595-03

Sample ID:	NJDEP	NJDEP	NJDEP		2-2024-				l-1-1.5			-1-1.5
Lab ID:	calculated1	interim	interim	460	-31085	9-5	460	-3108	359-1	460)-3108	59-7
Date Sampled:	interim	R-SRS	NR-SRS		9/5/24			9/5/2			9/5/24	
Sample Depth (ft bgs):	SRS-MGW	(mg/kg)	(mg/kg)		1-1.5'	1		1-1.5			1-1.5	
	(mg/kg)	(55)	(55)	Result	Q	MDL	Result	Q	MDL	Result	Q	MDL
Per- and Polyfluoroalkyl Substances (PFAS) (mg/kg)		1	ı	ı		ı	1		1			
11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11Cl-PF3OUdS)	NS	NS	NS		U	0.000051		U	0.000051		U	0.000051
1H,1H,2H,2H-Perfluorodecane sulfonic acid (8:2 FTS)	NS	NS	NS		U	0.0001		U	0.0001		U	0.0001
1H,1H,2H,2H-Perfluorohexane sulfonic acid (4:2 FTS)	NS	NS	NS		U	0.0001		U	0.0001		U	0.0001
1H,1H,2H,2H-Perfluorooctane sulfonic acid (6:2 FTS)	NS	NS	NS	0.00013	J	0.0001		U	0.0001		U	0.0001
3-Perfluoroheptylpropanoic acid (7:3 FTCA)	NS	NS	NS		U	0.00026		U	0.00025		U	0.00026
3-Perfluoropentylpropanoic acid (5:3 FTCA)	NS	NS	NS		U	0.00026		U	0.00025		U	0.00026
3-Perfluoropropylpropanoic acid (3:3 FTCA)	NS	NS	NS		U	0.0001		U	0.0001		U	0.0001
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	NS	NS	NS		U	0.000051		U	0.000051		U	0.000051
9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid (9CI-PF3ONS)	NS	NS	NS		U	0.000051		U	0.000051		U	0.000051
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	NS ²	0.23	3.9		U	0.000051		U	0.000051		U	0.000051
N-ethylperfluorooctane sulfonamide (NEtFOSA)	NS	NS	NS	0.00089		0.000051		U	0.000051		U	0.000051
N-ethylperfluorooctane sulfonamidoethanol (NEtFOSE)	NS	NS	NS	0.00031	J	0.00026		U	0.00025		U	0.00026
N-ethylperfluorooctanesulfonamidoacetic acid (NEtFOSAA)	NS	NS	NS	0.002		0.000051	0.00034		0.000051	0.00053		0.000051
N-methylperfluorooctane sulfonamide (NMeFOSA)	NS	NS	NS	0.000082	J	0.000051		U	0.000051		U	0.000051
N-methylperfluorooctane sulfonamidoethanol (NMeFOSE)	NS	NS	NS	0.00035	J	0.00026		U	0.00025		U	0.00026
N-methylperfluorooctanesulfonamidoacetic acid (NMeFOSAA)	NS	NS	NS	0.00062		0.000054		U	0.000054	0.000061	J	0.000054
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	NS	NS	NS		U	0.000051		U	0.000051		U	0.000051
Perfluoro (2-ethoxyethane) sulfonic acid (PFEESA)	NS	NS	NS		U	0.000051		U	0.000051		U	0.000051
Perfluoro-3-methoxypropanoic acid (PFMPA)	NS	NS	NS		U	0.000051		U	0.000051		U	0.000051
Perfluoro-4-methoxybutanoic acid (PFMBA)	NS	NS	NS		U	0.000051		U	0.000051		U	0.000051
Perfluorobutanesulfonic acid (PFBS)	NS	NS	NS		U	0.000051		U	0.000051		U	0.000051
Perfluorobutanoic acid (PFBA)	NS	NS	NS	0.00029	J	0.0001		U	0.0001		U	0.0001
Perfluorodecanesulfonic acid (PFDS)	NS	NS	NS	0.0023		0.000051	0.0039		0.000051	0.00016	J	0.000051
Perfluorodecanoic acid (PFDA)	NS	NS	NS	0.0068		0.000051	0.00074		0.000051	0.00064		0.000051
Perfluorododecanesulfonic acid (PFDoS)	NS	NS	NS		U	0.000051		U	0.000051		U	0.000051
Perfluorododecanoic acid (PFDoA)	NS	NS	NS	0.0015		0.000051	0.00043		0.000051	0.00032		0.000051
Perfluoroheptanesulfonic acid (PFHpS)	NS	NS	NS	0.00045		0.000051		U	0.000051		U	0.000051
Perfluoroheptanoic acid (PFHpA)	NS	NS	NS	0.0027		0.000051	0.00021		0.000051	0.00023		0.000051
Perfluorohexanesulfonic acid (PFHxS)	NS	NS	NS	0.0011		0.000051	0.000056	J	0.000051	0.00012	J	0.000051
Perfluorohexanoic acid (PFHxA)	NS	NS	NS	0.0012		0.000051	0.00032		0.000051	0.00018	J	0.000051
Perfluorononanesulfonic acid (PFNS)	NS	NS	NS		U	0.000051		U	0.000051		U	0.000051
Perfluorononanoic acid (PFNA)	0.0078 (Calculated) ¹	0.047	0.67	0.0078		0.000051	0.0017		0.000051	0.00079		0.000051
Perfluorooctanesulfonamide (PFOSA)	NS	NS	NS	0.0064		0.000051	0.00012	J	0.000051	0.00022		0.000051
Perfluorooctanesulfonic acid (PFOS)	0.0073 (Calculated) ¹	0.11	1.6	0.045		0.000051	0.0073		0.000051	0.0054		0.000051
Perfluorooctanoic acid (PFOA)	0.00098 (Calculated) ¹	0.13	1.8	0.02		0.00011	0.00098		0.00011	0.0012		0.00011
Perfluoropentanesulfonic acid (PFPeS)	NS	NS	NS	0.000072	J	0.000051		U	0.000051		U	0.000051
Perfluoropentanoic acid (PFPeA)	NS	NS	NS	0.0011		0.000082	0.0004		0.000081	0.00027		0.000082
Perfluorotetradecanoic acid (PFTeDA)	NS	NS	NS	0.00091		0.000051	0.00018	J	0.000051	0.0002	J	0.000051
Perfluorotridecanoic acid (PFTrDA)	NS	NS	NS	0.00067		0.000051	0.00031	Ť	0.000051	0.00012	J	0.000051
Perfluoroundecanoic acid (PFUnA)	NS	NS	NS	0.001	1	0.000051	0.0025		0.000051	0.00045	-	0.000051
All results are reported in milligrams per kilogram (mg/kg)	1 A O O C ifi - M O	110	110	0.001	1	3.000001	0.0020		0.0000001	5.000-0		3.00000

All results are reported in milligrams per kilogram (mg/kg) ft bgs = Feet below ground surface

Q = Qualifier

NS = No standard

U = Analyzed for but Not Detected at the MDL
J = Concentration detected at a value below the RL and above the MDL
MDL = Method Detection Limit

¹AOC Specific MGW-SRS calculated using the synthetic precipitation leaching procedure (SPLP) and the Department's PFAS SPLP calculator ²AOC Specific SRS-MGW could not be calculated as all soil results were Not Detected at the MDL

##

Exceeds AOC Specific Soil Remediation Standards for the Migration to Groundwater pathway (SRS-MGW)

TABLE 4A SEPTEMBER 2024 - ANALYTICAL RESULTS - VOLATILES "S. YAFFA AND SONS, INC."

616 CHESTNUT STREET ET AL., CITY OF CAMDEN, CAMDEN COUNTY, NJ 08103 BLOCK 331 / NJDEP CSRRP PI # 025881

Montrose Project # 11595-03

Sample ID:				TP2-	2024-1.	0-1.5	TP3-2024	-1.0-1.5	TP4	-2024-1.	0-1.5
Lab ID:	2021 NJ	2021 NJ	2021 NJ Non-	460	-311355		460-31		46	0-31135	
Date Sampled:	SRSMGW	Residential	Residential		9/12/24		9/12			9/12/24	
Sample Depth (ft bgs):		SRS (RSRS)	SRS (NRSRS)		1-1.5		1-1			1-1.5	
				Conc	Q	MDL	Conc Q	MDL	Conc	Q	MDL
Volatile Organic Compounds (mg/kg	,							1			
1,1,1-Trichloroethane	0.20	160,000	NS		U	0.00024	NA			U	0.00026
1,1,2,2-Tetrachloroethane	0.0069	3.5	18		U	0.00022	NA			U	0.00024
1,1,2-Trichloro-1,2,2-trifluoroethane	NS	NS	NS		U	0.00031	NA			U	0.00033
1,1,2-Trichloroethane	0.017	12	64		U	0.00018	NA			U	0.0002
1,1-Dichloroethane	0.24	120	640		U	0.00021	NA			U	0.00023
1,1-Dichloroethene	0.0069	11	180		U	0.00023	NA			U	0.00025
1,2,3-Trichlorobenzene	NS	NS	NS		U	0.00019	NA			U	0.0002
1,2,4-Trichlorobenzene	0.52	94	13,000		U	0.00037	NA			U	0.0004
1,2-Dibromo-3-Chloropropane	0.026	0.12	0.52		U	0.00048	NA			U	0.00051
1,2-Dichlorobenzene	11	6,700	110,000		U	0.00037	NA			U	0.0004
1,2-Dichloroethane	0.0095	5.8	30		U	0.00031	NA			U	0.00033
1,2-Dichloropropane	0.0058	5.7	27		U	0.00044	NA			U	0.00047
1,3-Dichlorobenzene	11	6,700	110,000		U	0.00038	NA			U	0.0004
1,4-Dichlorobenzene	1.4	780	13,000		U	0.00023	NA			U	0.00025
1,4-Dioxane	0.067	7.0	36		U	0.0095	NA			U	0.01
2-Butanone (MEK)	0.98	47,000	780,000		U	0.00038	NA			U	0.00041
2-Hexanone	0.15	390	6,500		U	0.0018	NA			U	0.0019
4-Methyl-2-pentanone (MIBK)	NS	NS	NS		U	0.0016	NA			U	0.0017
Acetone	19	70,000	NS		J	0.0059	NA			U	0.0063
Acrolein	NS	NS	NS		J	0.029	NA			U	0.031
Acrylonitrile	NS	NS	NS		J	0.005	NA			U	0.0054
Benzene	0.0094	2.2	11		U	0.00027	NA			U	0.00029
Bromoform	0.018	88	460		U *+	0.00044	NA			U *+	0.00047
Bromomethane	0.043	18	82		U	0.001	NA			U	0.0011
Carbon disulfide	3.7	NS	NS		U	0.00028	NA			U	0.00029
Carbon tetrachloride	0.0075	1.4	6.9		U	0.0004	NA			U	0.00043
Chlorobenzene	0.64	510	8,400		U	0.00018	NA			U	0.0002
Chlorobromomethane	NS	NS	NS		U	0.00029	NA			U	0.00031
Chlorodibromomethane	0.005	8.3	43		U	0.0002	NA			U	0.00021
Chloroethane	NS	NS	NS		U *+	0.00054	NA			U *+	0.00058
Chloroform	0.33	590	13,000		U	0.001	NA			U	0.0011
Chloromethane	NS	270	1,200		U	0.00045	NA			U	0.00048
cis-1,2-Dichloroethene	0.35	780	13,000		U	0.00037	NA			U	0.0004
cis-1,3-Dichloropropene	0.0063	4.8	23		U	0.00028	NA			U	0.0003
Cyclohexane	NS	NS	NS		U	0.00023	NA			U	0.00024
Dichlorobromomethane	0.0050	11	59		U	0.00027	NA			U	0.00028
Dichlorodifluoromethane	38	16,000	260,000		U	0.00035	NA			U	0.00037
Ethylbenzene	15	10	48		U	0.00021	NA			U	0.00022
Isopropylbenzene	22	7,800	130,000		U	0.00019	NA			U	0.0002
Methyl acetate	22	78,000	NS		U	0.00029	NA			U	0.00032
Methyl tert-butyl ether	0.25	140	650		U	0.0045	NA			U	0.0048
Methylcyclohexane	NS	NS	NS		U	0.00053	NA			U	0.00057
Methylene Chloride	0.013	50	260		U	0.00052	NA			U	0.00055
m-Xylene & p-Xylene	19	12,000	190000		U	0.0012	NA			U	0.0013
o-Xylene	19	12,000	190000		U	0.00018	NA			U	0.00019
Styrene	2.1	16,000	260,000		U	0.0002	NA			Ü	0.00021
Tert-butyl Alcohol	0.32	1,400	23,000		U	0.00029	NA	1		Ü	0.00031
Tetrachloroethene	0.0086	47	1,700		U	0.0081	NA NA			Ü	0.0087
Toluene	7.8	6,300	100,000		U	0.00032	NA NA			Ü	0.00034
trans-1,2-Dichloroethene	0.56	1,300	22,000		U	0.00032	NA NA			U	0.00034
trans-1,3-Dichloropropene	0.0063	4.8	23		U	0.00024	NA NA		t	U	0.00027
Trichloroethene	0.0065	3.0	14		U	0.00023	NA NA		t	U	0.00027
Trichlorofluoromethane	29	23,000	390,000		U	0.00028	NA NA	+	-	U	0.00029
Vinyl chloride	0.0067	0.97	5.0	0.00089	J	0.00033	NA NA	+	-	U	0.00036
Xylenes, Total	19	12,000	190,000	5.00003	U	0.00042	NA NA	+	 	U	0.00045
VOC TIC Conc. (# TICs)	NS NS	NS	190,000 NS	ND	U	0.00037	NA NA	-	ND	U	0.0000
mg/kg = Milligrams per kilogram	INO	INO	INO	טא			INA	-	IND	l	

mg/kg = Milligrams per kilogram

Exceeds 2021 NJ SRS for the Migration to Groundwater Pathway (SRSMGW)

Exceeds 2021 NJ Residential Soil Remediation Standard (RSRS)

Exceeds 2021 NJ Non-Residential Soil Remediation Standard (NRSRS)

Exceeds SRSMGW and RSRS

MDL exceeds a standard but compound ND

Q = Qualifier; ft bgs = Feet below ground surface

NS = No standard; ND = Non-Detect; NA: Not Analyzed; U = Analyzed for but Not Detected at the MDL

 $^{{\}bf J}$ = Concentration detected at a value below the RL and above the MDL

MDL = Method Detection Limit

 $p = The \ \% RPD \ between \ the \ primary \ and \ confirmation \ column/detector \ is \ >40\%. \ The \ lower \ value \ has \ been \ reported.$

^{*} Exceeds NRSRS and SRSMGW

 $^{^{\}star\star}\,\text{NJAC}\,7:\!26\text{D}\,\text{was}\,\text{amended}\,\text{on}\,\text{May}\,6\,,\!2024.\,\,\text{The}\,\text{lead}\,\text{ingestion-dermal}\,\text{exposure}\,\text{pathway}\,\text{was}\,\text{updated}\,\text{from}\,400\,\text{mg/kg}\,\text{to}\,200\,\text{mg/kg}.$

F1 = MS and/or MSD recovery exceeds control limits.; *+ = LCS and/or LCSD is outside acceptance limits, high biased.; *1 = LCS/LCSD RPD exceeds control limits.

TABLE 4A SEPTEMBER 2024 - ANALYTICAL RESULTS - VOLATILES "S. YAFFA AND SONS, INC."

616 CHESTNUT STREET ET AL., CITY OF CAMDEN, CAMDEN COUNTY, NJ 08103 BLOCK 331 / NJDEP CSRRP PI # 025881

Montrose Project # 11595-03

Sample ID: Lab ID:		2021 NJ	2021 NJ Non-		024-1.0 -311355			-2024-1. 0-31135			8-2024-8 60-3113			-2024-1 60-3113	
Date Sampled:	2021 NJ	Residential	Residential		9/12/24		.,	9/12/24			9/12/2			9/12/24	
Sample Depth (ft bgs):	SRSMGW	SRS (RSRS)	SRS (NRSRS)		1-1.5			1-1.5			8-8.5			1-1.5	•
		(,	()	Conc	Q	MDL	Conc	Q	MDL	Conc	Q	MDL	Conc	Q	MDL
Volatile Organic Compounds (mg/kg	g)		•												
1,1,1-Trichloroethane	0.20	160,000	NS		NA			U	0.00022		U	0.00021		U	0.00022
1,1,2,2-Tetrachloroethane	0.0069	3.5	18		NA			U	0.0002		U	0.0002		U	0.00021
1,1,2-Trichloro-1,2,2-trifluoroethane	NS	NS	NS		NA			U	0.00029		U	0.00027		U	0.00029
1,1,2-Trichloroethane	0.017	12	64		NA			U	0.00017		U	0.00016		U	0.00017
1,1-Dichloroethane	0.24	120	640		NA			U	0.0002		U	0.00019		U	0.0002
1,1-Dichloroethene	0.0069	11	180		NA			U	0.00021		U	0.00021		U	0.00022
1,2,3-Trichlorobenzene	NS	NS	NS		NA			U	0.00017		U	0.00017		U	0.00017
1,2,4-Trichlorobenzene	0.52	94	13,000		NA			U	0.00034		U	0.00033		U	0.00034
1,2-Dibromo-3-Chloropropane	0.026	0.12	0.52		NA			U	0.00044		U	0.00042		U	0.00044
1,2-Dichlorobenzene	11	6,700	110,000		NA			U	0.00034		U	0.00033		U	0.00035
1,2-Dichloroethane	0.0095	5.8	30		NA			U	0.00028		U	0.00027		U	0.00028
1,2-Dichloropropane	0.0058	5.7	27		NA			U	0.0004		U	0.00039		U	0.00041
1,3-Dichlorobenzene	11	6,700	110,000		NA			U	0.00035		U	0.00033		U	0.00035
1,4-Dichlorobenzene	1.4	780	13,000		NA			U	0.00021		U	0.00021		U	0.00022
1,4-Dioxane	0.067	7.0	36		NA			U	0.0088		U	0.0084		U	0.0088
2-Butanone (MEK)	0.98	47,000	780,000		NA		0.028		0.00035		U	0.00034		U	0.00035
2-Hexanone	0.15	390	6,500		NA			U	0.0016		U	0.0016		U	0.0016
4-Methyl-2-pentanone (MIBK)	NS	NS	NS		NA			U	0.0015		U	0.0014		U	0.0015
Acetone	19	70,000	NS		NA		0.11		0.0055		U	0.0052		U	0.0055
Acrolein	NS	NS	NS		NA			U	0.027		U	0.026		U	0.027
Acrylonitrile	NS	NS	NS		NA			U	0.0046		U	0.0044		U	0.0047
Benzene	0.0094	2.2	11		NA		0.0024		0.00025		U	0.00024		U	0.00025
Bromoform	0.018	88	460		NA			U *+	0.00041		U *+	0.00039		U *+	0.00041
Bromomethane	0.043	18	82		NA			U	0.00095		U	0.00091		U	0.00096
Carbon disulfide	3.7	NS	NS		NA		0.0044		0.00025		U	0.00024		U	0.00026
Carbon tetrachloride	0.0075	1.4	6.9		NA			U	0.00037		U	0.00035		U	0.00037
Chlorobenzene	0.64	510	8,400		NA			U	0.00017		U	0.00016		U	0.00017
Chlorobromomethane	NS	NS	NS		NA			U	0.00027		U	0.00026		U	0.00027
Chlorodibromomethane	0.005	8.3	43		NA			U	0.00019		U	0.00018		U	0.00019
Chloroethane	NS	NS	NS		NA			U *+	0.0005		U *+	0.00048		U *+	0.0005
Chloroform	0.33	590	13,000		NA			U	0.00093		U	0.00089		U	0.00093
Chloromethane	NS	270	1,200		NA			U	0.00042		U	0.0004		U	0.00042
cis-1,2-Dichloroethene	0.35	780	13,000		NA			U	0.00034		U	0.00033		U	0.00034
cis-1,3-Dichloropropene	0.0063	4.8	23		NA			U	0.00026		U	0.00025		U	0.00026
Cyclohexane	NS	NS	NS		NA			U	0.00021		U	0.0002		U	0.00021
Dichlorobromomethane	0.0050	11	59		NA			U	0.00025		U	0.00023		U	0.00025
Dichlorodifluoromethane	38	16,000	260,000		NA			U	0.00032		U	0.00031		U	0.00032
Ethylbenzene	15	10	48		NA		0.0015		0.00019		U	0.00018		U	0.00019
Isopropylbenzene	22	7,800	130,000		NA			U	0.00017		U	0.00016		U	0.00017
Methyl acetate	22	78,000	NS		NA		0.0037		0.00027		U	0.00026		U	0.00027
Methyl tert-butyl ether	0.25	140	650		NA		0.0081		0.0041		U	0.0039		U	0.0041
Methylcyclohexane	NS	NS	NS		NA			U	0.00049		U	0.00047		U	0.00049
Methylene Chloride	0.013	50	260		NA		0.003		0.00048		U	0.00046		U	0.00048
m-Xylene & p-Xylene	19	12,000	190000		NA			U	0.0011		U	0.001		U	0.0011
o-Xylene	19	12,000	190000		NA		0.0011		0.00017		U	0.00016		U	0.00017
Styrene	2.1	16,000	260,000		NA		0.0016		0.00019		U	0.00018		U	0.00019
Tert-butyl Alcohol	0.32	1,400	23,000		NA			U	0.00027		U	0.00025		U	0.00027
Tetrachloroethene	0.0086	47	1,700		NA			U	0.0075		U	0.0072		U	0.0075
Toluene	7.8	6,300	100,000		NA			U	0.00029		U	0.00028		U	0.00029
trans-1,2-Dichloroethene	0.56	1,300	22,000		NA		0.00073	J	0.00022		U	0.00021		U	0.00022
trans-1,3-Dichloropropene	0.0063	4.8	23		NA			U	0.00023		U	0.00022		U	0.00024
Trichloroethene	0.0065	3.0	14		NA			U	0.00025		U	0.00024		U	0.00026
Trichlorofluoromethane	29	23,000	390,000		NA			U	0.00031		U	0.00029		U	0.00031
Vinyl chloride	0.0067	0.97	5.0		NA		0.00041	J	0.00039		U	0.00037		U	0.00039
Xylenes, Total	19	12,000	190,000		NA			U	0.00052		U	0.0005		U	0.00052
VOC TIC Conc. (# TICs) mg/kg = Milligrams per kilogram	NS	NS	NS		NA		0.284 (10)			ND			ND		

mg/kg = Milligrams per kilogram

p = The %RPD between the primary and confirmation column/detector is >40%. The lower value has

Exceeds 2021 NJ SRS for the Migration to Groundwater Pathway (SRSMGW)

Exceeds 2021 NJ Residential Soil Remediation Standard (RSRS)

Exceeds 2021 NJ Non-Residential Soil Remediation Standard (NRSRS) Exceeds SRSMGW and RSRS

##

MDL exceeds a standard but compound ND

Q = Qualifier; ft bgs = Feet below ground surface

NS = No standard; ND = Non-Detect; NA: Not Analyzed; U = Analyzed for but Not Detected

 $^{{\}bf J}$ = Concentration detected at a value below the RL and above the MDL

MDL = Method Detection Limit

^{*} Exceeds NRSRS and SRSMGW

 $^{^{\}star\star}$ NJAC 7:26D was amended on May 6 ,2024. The lead ingestion-dermal exposure pathwa

F1 = MS and/or MSD recovery exceeds control limits.; *+ = LCS and/or LCSD is outside acc

TABLE 4A SEPTEMBER 2024 - ANALYTICAL RESULTS - VOLATILES "S. YAFFA AND SONS, INC."

616 CHESTNUT STREET ET AL., CITY OF CAMDEN, CAMDEN COUNTY, NJ 08103 BLOCK 331 / NJDEP CSRRP PI # 025881

Montrose Project # 11595-03

Sample ID: Lab ID: Date Sampled:	2021 NJ	2021 NJ	2021 NJ Non-		-2024-1. 0-31135			-2024-8 0-31135 9/12/24	55-8		3113	55-9	
	SRSMGW	Residential	Residential	9/12/24				8-8.5	•	9/12/24			
Sample Depth (ft bgs):		SRS (RSRS)	SRS (NRSRS)	Conc	1-1.5 Q	MDL	Conc	8-8.5 Q	MDL	Conc	1-1.5 Q	MDL	
Volatile Organic Compounds (mg/kg	7)			Conc	<u>u</u>	WIDL	COIIC	Q	MIDL	COLIC	Q	MIDL	
1,1,1-Trichloroethane	0.20	160,000	NS		U	0.00021		U	0.00018	1	U	0.00028	
1,1,2,2-Tetrachloroethane	0.0069	3.5	18		U	0.00021		U	0.00017		U	0.00025	
1,1,2-Trichloro-1,2,2-trifluoroethane	NS	NS NS	NS		U	0.00013		U	0.00017		U	0.00025	
1,1,2-Trichloroethane	0.017	12	64		U	0.00016		U	0.00014		U	0.00021	
1,1-Dichloroethane	0.24	120	640		Ü	0.00018		U	0.00016		Ü	0.00024	
1,1-Dichloroethene	0.0069	11	180		Ü	0.0002		U	0.00018		Ü	0.00027	
1,2,3-Trichlorobenzene	NS	NS	NS		U	0.00016		U	0.00014		U	0.00022	
1,2,4-Trichlorobenzene	0.52	94	13,000		U	0.00032		U	0.00028		U	0.00043	
1,2-Dibromo-3-Chloropropane	0.026	0.12	0.52		U	0.00041		U	0.00036		U	0.00055	
1,2-Dichlorobenzene	11	6,700	110,000		U	0.00032		U	0.00028		U	0.00043	
1,2-Dichloroethane	0.0095	5.8	30		U	0.00026		U	0.00023		U	0.00035	
1,2-Dichloropropane	0.0058	5.7	27		U	0.00038		U	0.00033		U	0.0005	
1,3-Dichlorobenzene	11	6,700	110,000		U	0.00033		U	0.00029		U	0.00043	
1,4-Dichlorobenzene	1.4	780	13,000		U	0.0002		U	0.00018		U	0.00027	
1,4-Dioxane	0.067	7.0	36		U	0.0082		U	0.0072		U	0.011	
2-Butanone (MEK)	0.98	47,000	780,000		U	0.00033		J	0.00029	0.0051	J	0.00044	
2-Hexanone	0.15	390	6,500		U	0.0015		ט	0.0013		U	0.002	
4-Methyl-2-pentanone (MIBK)	NS	NS	NS		U	0.0014		U	0.0012		U	0.0018	
Acetone	19	70,000	NS		U	0.0051	0.0054		0.0045	0.026		0.0068	
Acrolein	NS	NS	NS		U	0.025		U	0.022		U	0.033	
Acrylonitrile	NS	NS	NS		U	0.0043		U	0.0038		U	0.0058	
Benzene	0.0094	2.2	11		U	0.00023		U	0.0002		U	0.00031	
Bromoform	0.018	88	460		U *+	0.00038		U *+	0.00033		U *+	0.0005	
Bromomethane	0.043	18	82		U	0.00089		U	0.00078		U	0.0012	
Carbon disulfide	3.7	NS	NS		U	0.00024		U	0.00021	0.00043	J	0.00032	
Carbon tetrachloride	0.0075	1.4	6.9		U	0.00035		U	0.0003		U	0.00046	
Chlorobenzene	0.64	510	8,400		U	0.00016		U	0.00014		U	0.00021	
Chlorobromomethane	NS	NS	NS		U	0.00025		U	0.00022		U	0.00033	
Chlorodibromomethane	0.005	8.3	43		U	0.00017		U	0.00015		U	0.00023	
Chloroethane	NS 0.00	NS FOO	NS 40,000		U *+	0.00047		U *+	0.00041		U *+	0.00062	
Chloroform	0.33	590	13,000		U	0.00087		U	0.00076		U	0.0012	
Chloromethane	NS 0.35	270 780	1,200 13,000		U	0.00039		U	0.00034		U	0.00052	
cis-1,2-Dichloroethene cis-1,3-Dichloropropene	0.0063	4.8	23		U	0.00032		U	0.00028		U	0.00043	
Cyclohexane	0.0063 NS	NS NS	NS NS		U	0.00024		U	0.00021		U	0.00032	
Dichlorobromomethane	0.0050	11	59		U	0.0002		U	0.00017		U	0.00020	
Dichlorodifluoromethane	38	16,000	260,000		U	0.00023		U	0.0002		U	0.00031	
Ethylbenzene	15	10,000	48		U	0.0003		U	0.00026		U	0.0004	
Isopropylbenzene	22	7,800	130,000		Ü	0.00016		U	0.00014		Ü	0.00021	
Methyl acetate	22	78,000	NS		Ü	0.00025		Ü	0.00022		Ü	0.00034	
Methyl tert-butyl ether	0.25	140	650		Ü	0.0038		Ü	0.0034		Ü	0.0051	
Methylcyclohexane	NS	NS	NS		Ü	0.00046		Ü	0.0004		Ū	0.00061	
Methylene Chloride	0.013	50	260		U	0.00044		U	0.00039		U	0.00059	
m-Xylene & p-Xylene	19	12,000	190000		U	0.001	0.0021		0.0009		U	0.0014	
o-Xylene	19	12,000	190000		U	0.00016		U	0.00014		U	0.00021	
Styrene	2.1	16,000	260,000		U	0.00017		U	0.00015		U	0.00023	
Tert-butyl Alcohol	0.32	1,400	23,000		U	0.00025		U	0.00022		U	0.00033	
Tetrachloroethene	0.0086	47	1,700		U	0.007		U	0.0061		U	0.0093	
Toluene	7.8	6,300	100,000		U	0.00027		U	0.00024		U	0.00036	
trans-1,2-Dichloroethene	0.56	1,300	22,000		U	0.00021		U	0.00018		U	0.00028	
trans-1,3-Dichloropropene	0.0063	4.8	23		U	0.00022		U	0.00019		U	0.00029	
Trichloroethene	0.0065	3.0	14		U	0.00024		U	0.00021		U	0.00032	
Trichlorofluoromethane	29	23,000	390,000		U	0.00029		U	0.00025		U	0.00038	
Vinyl chloride	0.0067	0.97	5.0		U	0.00036		U	0.00032	0.00057	J	0.00048	
Xylenes, Total	19	12,000	190,000		U	0.00049		U	0.00043		U	0.00065	
VOC TIC Conc. (# TICs) mg/kg = Milligrams per kilogram	NS	NS	NS	ND			ND			ND			

mg/kg = Milligrams per kilogram

MDL = Method Detection Limit

p = The %RPD between the primary and confirmation column/detector is >40%. The lower value has

Exceeds 2021 NJ SRS for the Migration to Groundwater Pathway (SRSMGW)

Exceeds 2021 NJ Residential Soil Remediation Standard (RSRS)

Exceeds 2021 NJ Residential Soil Remediation Standard (RSRS)

Exceeds 2021 NJ Non-Residential Soil Remediation Standard (NRSRS) Exceeds SRSMGW and RSRS

##

Q = Qualifier; ft bgs = Feet below ground surface

NS = No standard; ND = Non-Detect; NA: Not Analyzed; U = Analyzed for but Not Detected

 $^{{\}sf J}$ = Concentration detected at a value below the RL and above the MDL

MDL exceeds a standard but compound ND

^{*} Exceeds NRSRS and SRSMGW

^{**} NJAC 7:26D was amended on May 6 ,2024. The lead ingestion-dermal exposure pathwa

F1 = MS and/or MSD recovery exceeds control limits.; *+ = LCS and/or LCSD is outside acc

TABLE 4B

SEPTEMBER 2024 - ANALYTICAL RESULTS - SEMIVOLATILES "S. YAFFA AND SONS, INC."

616 CHESTNUT STREET ET AL., CITY OF CAMDEN, CAMDEN COUNTY NJ 08103 BLOCK 331 / NJDEP CSRRP PI # 025881

Montrose Project # 11595-03

Sample ID: Lab ID:	2021 NJ	2021 NJ	2021 NJ Non-	9/12/24				3-2024- 50-3113	55-2		-2024-1. 0-31135	5-1	TP6-2024-1.0-1.5 460-311355-5			
Date Sampled:	SRSMGW	Residential	Residential				9/12/24				9/12/24			9/12/24		
Sample Depth (ft bgs):		SRS (RSRS)	SRS (NRSRS)	Conc	1-1.5 Q MDL		1-1.5 Conc Q		MDL	Conc	1-1.5 Q	MDL	Conc	1-1.5 Q	MDL	
Semi-Volatile Organic Compou	ınds (ma/ka)		l	Conc	_ \ \	MIDE	Conc		WIDE	Conc	_ u	MIDL	COIIC	u	WIDE	
1,1'-Biphenyl	NS NS	87	450	0.013	J	0.012		NA		1.4	J	0.06		NA	П	
1,2,4,5-Tetrachlorobenzene	NS	23	390		U	0.011		NA			U	0.054		NA		
1,2-Diphenylhydrazine	NS	NS	NS		U	0.013		NA			U	0.068		NA		
2,2'-oxybis[1-chloropropane]	1.9	3,100	52,000		U	0.02		NA			U	0.1		NA		
2,3,4,6-Tetrachlorophenol	26	1,900	27,000		U	0.023		NA			U	0.12		NA		
2,4,5-Trichlorophenol	68	6,300	91,000		U	0.035		NA			U	0.18		NA		
2,4,6-Trichlorophenol	0.86	49	230		U	0.044		NA			U	0.22		NA		
2,4-Dichlorophenol	0.19	190	2,700		U	0.022		NA			U	0.11		NA		
2,4-Dimethylphenol	2.3	1,300	18,000		U	0.041		NA		0.29	J	0.21		NA		
2,4-Dinitrophenol	0.33	130	1,800		U	0.17		NA			U	0.85		NA		
2,4-Dinitrotoluene	NS	NS	NS		U	0.037		NA			U	0.19		NA		
2,6-Dinitrotoluene	NS	NS	NS		U	0.025		NA			U	0.13		NA		
2-Chloronaphthalene	NS	4,800	67,000		U	0.016		NA			U	0.08		NA		
2-Chlorophenol	0.76	390	6,500		U	0.012		NA			U	0.062		NA		
2-Methylnaphthalene	3.1	240	3,300	0.041	J	0.0096		NA		8.3		0.048		NA		
2-Methylphenol	0.77	320	4,600		U	0.013		NA		0.17	J	0.065		NA		
2-Nitroaniline	NS	NS	NS		U	0.026		NA			U	0.13		NA		
2-Nitrophenol	NS	NS	NS		U	0.034		NA			U	0.17		NA		
3,3'-Dichlorobenzidine	3.9	1.2	5.7		U	0.052		NA			U	0.26		NA		
3-Nitroaniline	NS	NS	NS		U	0.081		NA			U	0.41		NA		
4,6-Dinitro-2-methylphenol	NS	NS	NS		U	0.14		NA			U	0.71		NA		
4-Bromophenyl phenyl ether	NS	NS	NS		U	0.014		NA			U	0.069		NA		
4-Chloro-3-methylphenol	NS	NS	NS		U	0.019		NA			U	0.097		NA		
4-Chloroaniline	0.23	2.7	13		U	0.061		NA			U	0.31		NA		
4-Chlorophenyl phenyl ether	NS	NS	NS		U	0.012		NA			U	0.061		NA		
4-Methylphenol	0.75	630	9,100		U	0.021		NA		0.62	J	0.11		NA		
4-Nitroaniline	NS	27	130		U	0.039		NA			U	0.2		NA		
4-Nitrophenol	NS	NS	NS		U	0.056		NA			U	0.28		NA		
Acenaphthene	NS	3,600	50,000	0.086	J	0.0097		NA		7.5		0.049	0.83	J	0.051	
Acenaphthylene	NS	NS	NS	0.17	J	0.0098		NA		2.5		0.049	0.22	J	0.051	
Acetophenone	3.6	7,800	130,000		U	0.017		NA			U	0.085		NA		
Anthracene	NS	18,000	250,000	0.37		0.01		NA		13		0.053	2		0.054	
Atrazine	0.33	220	3,200		U	0.02		NA			U	0.1		NA		
Benzaldehyde	NS	170	910		U	0.057		NA			U	0.29		NA		
Benzidine	NS	NS	NS		U	0.072		NA			U	0.36		NA		
Benzo[a]anthracene	0.71	5.1	23	1.3		0.026		NA		18		0.13	3.3		0.13	
Benzo[a]pyrene	NS	0.51	2.3	1.2		0.0091		NA		16		0.046	2.7		0.047	
Benzo[b]fluoranthene	NS	5.1	23	1.6		0.0088		NA		20		0.045	3.7		0.046	
Benzo[g,h,i]perylene	NS	NS	NS	0.72		0.01		NA		6.9		0.051	1.2	J	0.052	
Benzo[k]fluoranthene	NS	51	230	0.6		0.0067		NA		7.6		0.034	1.3		0.035	
Bis(2-chloroethoxy)methane	NS	190	2,700		U	0.027		NA			U	0.13		NA		
Bis(2-chloroethyl)ether	0.33	0.63	3.3		U	0.012		NA			U	0.06		NA		
Bis(2-ethylhexyl) phthalate	14	39	180	0.085	J	0.018		NA			U	0.092		NA		
Butyl benzyl phthalate	29	290	1,300		U	0.016		NA			U	0.081		NA		
Caprolactam	16	290	1,300		U	0.053		NA			U	0.27		NA		
Carbazole	NS	NS	NS	0.15	J	0.013		NA		5		0.066	1	NA		
Chrysene	NS	510	2,300	1.5		0.014		NA		18		0.073	3		0.075	
Dibenz(a,h)anthracene	NS	0.51	2.3	0.19		0.015		NA		2.1		0.075	0.39		0.077	
Dibenzofuran	NS	NS	NS	0.061	J	0.011		NA		4.8		0.058		NA		
Diethyl phthalate	44	51,000	730,000		U	0.011		NA			U	0.056		NA		
Dimethyl phthalate	NS	NS	NS		U	0.078		NA			U	0.39	1	NA		
Di-n-butyl phthalate	NS	6,300	91,000		U	0.013		NA			U	0.065	1	NA		
Di-n-octyl phthalate	NS	630	9,100		U	0.018		NA			U	0.092	1	NA		
Fluoranthene	NS	2,400	33,000	2.5		0.012		NA		36		0.06	6.5		0.062	
Fluorene	NS	2,400	33,000	0.093	J	0.01		NA		9.2		0.051	0.81	J	0.052	
Hexachlorobenzene	0.17	0.43	2.3	T	Ü	0.016	1	NA			U	0.082	T	NA	T	
Hexachlorobutadiene	0.17	8.9	47		Ü	0.0073	1	NA			U	0.037	†	NA	t —	
Hexachlorocyclopentadiene	2.5	2.7	7,800		U *+	0.03	1	NA			U *+	0.15	†	NA	t —	
Hexachloroethane	0.17	17	91		U	0.012		NA			U	0.059	†	NA	1	
Indeno[1,2,3-cd]pyrene	NS	5.1	23	0.7		0.013		NA		7.5		0.068	1.3		0.069	
Isophorone	0.23	570	2,700		U	0.099		NA			U	0.5	T ~	NA	1	
Naphthalene	19	5.7	27	0.065	J	0.0059		NA		12		0.03	0.31	J	0.031	
Nitrobenzene	0.17	7.5	36	T	Ü	0.019	1	NA			U	0.096	T	NA	T	
N-Nitrosodimethylamine	NS	NS	NS		U	0.032		NA			U	0.16	1	NA		
N-Nitrosodi-n-propylamine	0.17	0.17	0.36		U	0.035	1	NA			U	0.13	†	NA	t —	
N-Nitrosodiphenylamine	1.1	110	520		U	0.028		NA			U	0.14	1	NA	t -	
Pentachlorophenol	0.33	1.0	4.4		U	0.020		NA			U	0.35	1	NA	t -	
Phenanthrene	NS NS	NS	NS	1.9	Ť	0.014	1	NA		55	D	0.14	7.9	. 4/1	0.073	
Phenol	21	19,000	270,000		U	0.013		NA		0.35	J	0.064	1	NA	2.0.0	
	NS	1,800	25,000	2.9	۲	0.0085	\vdash	NA		34	-	0.043	5.9	11/	0.044	
Pyrene																

mg/kg = Milligrams per kilogram

Exceeds 2021 NJ SRS for the Migration to Groundwater Pathway (SRSMGW)

Exceeds 2021 NJ Residential Soil Remediation Standard (RSRS)

Exceeds 2021 NJ Non-Residential Soil Remediation Standard (NRSRS)

Exceeds SRSMGW and RSRS

* NRSRS that exceeds SRSMGW

D = Dilluted

H:\Camden Redevelopment Agency\11595-03 Yaffa Block 331 PASI\Tables\Table 4 - 2024-0912 Soil Page 1 of 3

Q = Qualifier; ft bgs = Feet below ground surface

NS = No standard; NA = Not analyzed U = Analyzed for but Not Detected at the MDL

J = Concentration detected at a value below the RL and above the MDL

MDL = Method Detection Limit

F1 = MS and/or MSD recovery exceeds control limits.

^{*+ =} LCS and/or LCSD is outside acceptance limits, high biased.

^{*1 =} LCS/LCSD RPD exceeds control limits.

TABLE 4B

SEPTEMBER 2024 - ANALYTICAL RESULTS - SEMIVOLATILES "S. YAFFA AND SONS, INC."

616 CHESTNUT STREET ET AL., CITY OF CAMDEN, CAMDEN COUNTY NJ 08103 BLOCK 331 / NJDEP CSRRP PI # 025881

Montrose Project # 11595-03

Sample ID: Lab ID:	2021 NJ	2021 NJ	2021 NJ Non-		-2024-1. 0-31135			8-2024-8 60-3113		TP9-2024-1.0-1.5 460-311355-6				
Date Sampled:	SRSMGW	Residential	Residential		9/12/24			9/12/2		9/12/24				
Sample Depth (ft bgs):		SRS (RSRS)	SRS (NRSRS)	Come	1-1.5	MDI	Come	8-8.5		Come	1-1.5	MDI		
Semi-Volatile Organic Compou	nde (ma/ka)			Conc	Q	MDL	Conc	Q	MDL	Conc	Q	MDL		
1,1'-Biphenyl	NS	87	450	0.2	J	0.064		U	0.012	0.037	J	0.012		
1,2,4,5-Tetrachlorobenzene	NS	23	390		U	0.058		U	0.01		U	0.01		
1,2-Diphenylhydrazine	NS	NS	NS		U	0.073		U	0.013		U	0.013		
2,2'-oxybis[1-chloropropane]	1.9	3,100	52,000		U	0.11		U	0.02		U	0.02		
2,3,4,6-Tetrachlorophenol	26	1,900	27,000		U	0.13		U	0.023		U	0.023		
2,4,5-Trichlorophenol	68	6,300	91,000		U	0.19		U	0.034		U	0.034		
2,4,6-Trichlorophenol	0.86	49	230		U	0.24		U	0.043		U	0.043		
2,4-Dichlorophenol	0.19	190	2,700		U	0.12		U	0.021		U	0.021		
2,4-Dimethylphenol	2.3	1,300	18,000		U	0.22		U	0.04		U	0.04		
2,4-Dinitrophenol	0.33	130	1,800		U	0.91		U	0.16		U	0.16		
2,4-Dinitrotoluene 2,6-Dinitrotoluene	NS NS	NS NS	NS NS		U	0.2		U	0.036		U	0.036 0.024		
2-Chloronaphthalene	NS	4,800	67,000		U	0.086		U	0.024		U	0.024		
2-Chlorophenol	0.76	390	6,500		U	0.066		U	0.013		U	0.013		
2-Methylnaphthalene	3.1	240	3,300	0.52	J	0.052		U	0.0093	0.14	J	0.0093		
2-Methylphenol	0.77	320	4,600		U	0.069		U	0.012		Ü	0.012		
2-Nitroaniline	NS	NS	NS		U	0.14		U	0.025		U	0.025		
2-Nitrophenol	NS	NS	NS		U	0.19		U	0.033		U	0.033		
3,3'-Dichlorobenzidine	3.9	1.2	5.7		U	0.28		U	0.05		U	0.05		
3-Nitroaniline	NS	NS	NS		U	0.44		U	0.079		U	0.079		
4,6-Dinitro-2-methylphenol	NS	NS	NS		U	0.75		U	0.14		U	0.14		
4-Bromophenyl phenyl ether	NS	NS	NS		U	0.073		U	0.013		U	0.013		
4-Chloro-3-methylphenol	NS	NS	NS		U	0.1		U	0.019		U	0.019		
4-Chloroaniline	0.23	2.7	13		U	0.33		U	0.059		U	0.059		
4-Chlorophenyl phenyl ether	NS	NS	NS		U	0.065		U	0.012		U	0.012		
4-Methylphenol	0.75	630	9,100		U	0.12		U	0.021		U	0.021		
4-Nitroaniline	NS	27	130		U	0.21		U	0.038		U	0.038		
4-Nitrophenol	NS	NS	NS		U	0.3		U	0.054		U	0.054		
Acenaphthene	NS	3,600	50,000	0.29	J	0.053		U	0.0095	0.34		0.0095		
Acenaphthylene	NS	NS 7,000	NS	0.17	J	0.053		U	0.0096	0.065	J	0.0095		
Acetophenone	3.6 NS	7,800 18,000	130,000 250,000	0.48	J	0.091		U	0.016	0.72	U	0.016		
Anthracene Atrazine	0.33	220	3,200	0.03	J	0.056		U	0.01	0.73	U	0.01		
Benzaldehyde	NS	170	910	0.79	J	0.31		U	0.055		U	0.055		
Benzidine	NS	NS	NS	0.70	Ü	0.39		Ü	0.07		Ü	0.07		
Benzo[a]anthracene	0.71	5.1	23	1.3	Ŭ	0.14	0.052		0.025	1.3		0.025		
Benzo[a]pyrene	NS	0.51	2.3	1.2		0.049	0.035		0.0089	1.2		0.0089		
Benzo[b]fluoranthene	NS	5.1	23	1.8		0.048	0.053		0.0086	1.3		0.0086		
Benzo[g,h,i]perylene	NS	NS	NS	0.63	J	0.055	0.016	J	0.0099	0.82		0.0098		
Benzo[k]fluoranthene	NS	51	230	0.63		0.036	0.029	J	0.0066	0.44		0.0065		
Bis(2-chloroethoxy)methane	NS	190	2,700		U	0.14		U	0.026		U	0.026		
Bis(2-chloroethyl)ether	0.33	0.63	3.3		U	0.064		U	0.012		U	0.012		
Bis(2-ethylhexyl) phthalate	14	39	180	6.4		0.098		U	0.018		U	0.018		
Butyl benzyl phthalate	29	290	1,300	0.27	J	0.087		U	0.016		U	0.016		
Caprolactam	16	290	1,300	0.45	U	0.29		U	0.052	0.10	U	0.052		
Carbazole	NS	NS 540	NS	0.17	J	0.07	0.0==	U	0.013	0.18	J	0.013		
Chrysene	NS	510	2,300	1.3	J	0.078	0.055	J	0.014	1.4		0.014		
Dibenz(a,h)anthracene Dibenzofuran	NS NS	0.51 NS	2.3 NS	0.18	J	0.08		U	0.014	0.16 0.14	J	0.014		
Diethyl phthalate	NS 44	51,000	730,000	U.Z	U	0.062		U	0.011	0.14	U	0.011		
Dimethyl phthalate	NS	51,000 NS	730,000 NS		U	0.06		U	0.011		U	0.011		
Di-n-butyl phthalate	NS	6,300	91,000	0.39	J	0.42		U	0.078		U	0.076		
Di-n-octyl phthalate	NS	630	9,100	5.55	U	0.098		U	0.013	1	U	0.018		
Fluoranthene	NS	2,400	33,000	2.7		0.065	0.1	J	0.012	3		0.012		
Fluorene	NS	2,400	33,000	0.46	J	0.054		Ü	0.0098	0.35		0.0097		
Hexachlorobenzene	0.17	0.43	2.3		U	0.088		U	0.016		U	0.016		
Hexachlorobutadiene	0.17	8.9	47		U	0.039		U	0.0071		U	0.0071		
Hexachlorocyclopentadiene	2.5	2.7	7,800		U *+	0.16		U *+	0.029		U *+	0.029		
Hexachloroethane	0.17	17	91		U	0.063		U	0.011		U	0.011		
Indeno[1,2,3-cd]pyrene	NS	5.1	23	0.62		0.072		U	0.013	0.68		0.013		
Isophorone	0.23	570	2,700		U	0.53		U	0.097		U	0.096		
Naphthalene	19	5.7	27	0.31	J	0.032		U	0.0058	0.11	J	0.0057		
Nitrobenzene	0.17	7.5	36		U	0.1		U	0.019		U	0.018		
N-Nitrosodimethylamine	NS	NS	NS		U	0.17		U	0.031		U	0.031		
					U	0.13	1	U	0.024	1	U	0.024		
N-Nitrosodi-n-propylamine	0.17	0.17	0.36											
N-Nitrosodiphenylamine	0.17 1.1	110	520		U	0.15		U	0.027		U	0.027		
N-Nitrosodiphenylamine Pentachlorophenol	0.17 1.1 0.33	110 1.0	520 4.4	2.2		0.15 0.38	0.070	U	0.069	2.0	U	0.068		
N-Nitrosodiphenylamine Pentachlorophenol Phenanthrene	0.17 1.1 0.33 NS	110 1.0 NS	520 4.4 NS	2.8	U	0.15 0.38 0.075	0.076	J	0.069 0.014	3.9	U	0.068 0.014		
N-Nitrosodiphenylamine Pentachlorophenol	0.17 1.1 0.33	110 1.0	520 4.4	2.8	U	0.15 0.38	0.076	U	0.069	3.9		0.068		

Q = Qualifier; ft bgs = Feet below ground surface NS = No standard; NA = Not analyzed U = Analyzed for but Not Detected at the MDL

Exceeds 2021 NJ SRS for the Migration to Groundwater Pathway (SRSMGW)

Exceeds 2021 NJ Residential Soil Remediation Standard (RSRS)

Exceeds 2021 NJ Non-Residential Soil Remediation Standard (NRSRS)

Exceeds SRSMGW and RSRS

- F1 = MS and/or MSD recovery exceeds control limits.
- \star + = LCS and/or LCSD is outside acceptance limits, high biased.
- *1 = LCS/LCSD RPD exceeds control limits.

D = Dilluted

Page 2 of 3 H:\Camden Redevelopment Agency\11595-03 Yaffa Block 331 PASI\Tables\Table 4 - 2024-0912 Soil

J = Concentration detected at a value below the RL and above the MDL

MDL = Method Detection Limit

^{*} NRSRS that exceeds SRSMGW

TABLE 4B

SEPTEMBER 2024 - ANALYTICAL RESULTS - SEMIVOLATILES "S. YAFFA AND SONS, INC."

616 CHESTNUT STREET ET AL., CITY OF CAMDEN, CAMDEN COUNTY NJ 08103 BLOCK 331 / NJDEP CSRRP PI # 025881

Montrose Project # 11595-03

Sample ID: Lab ID:		2021 NJ	2021 NJ Non-	TP11-			-2024-8 0-31135		TP12-2024-1.0-1.5 460-311355-9				
Date Sampled:	2021 NJ SRSMGW	Residential	Residential				9/12/24		9/12/24				
Sample Depth (ft bgs):	SKSWIGW	SRS (RSRS)	SRS (NRSRS)		1-1.5			8-8.5			1-1.5		
				Conc	Q	MDL	Conc	Q	MDL	Conc	Q	MDL	
Semi-Volatile Organic Compou		0.7	450	0.10		0.040	1 1	- 11	0.040	0.040		0.040	
1,1'-Biphenyl 1,2,4,5-Tetrachlorobenzene	NS NS	87 23	450 390	0.19	J	0.012		U	0.012	0.042	J	0.012	
1,2-Diphenylhydrazine	NS	NS NS	NS NS		U	0.013		U	0.013		U	0.011	
2,2'-oxybis[1-chloropropane]	1.9	3,100	52,000		Ü	0.02		U	0.02		U	0.021	
2,3,4,6-Tetrachlorophenol	26	1,900	27,000		U	0.023		U	0.023		U	0.024	
2,4,5-Trichlorophenol	68	6,300	91,000		U	0.034		U	0.034		U	0.036	
2,4,6-Trichlorophenol	0.86	49	230		U	0.043		U	0.043		U	0.046	
2,4-Dichlorophenol	0.19	190	2,700		U	0.021		U	0.022		U	0.023	
2,4-Dimethylphenol	2.3	1,300	18,000		U	0.04		U	0.04		U	0.043	
2,4-Dinitrophenol	0.33	130	1,800		U	0.16		U	0.17		U	0.18	
2,4-Dinitrotoluene	NS	NS	NS		U	0.036		U	0.036		U	0.039	
2,6-Dinitrotoluene	NS	NS 4.000	NS 67,000		U	0.024		U	0.024		U	0.026	
2-Chloronaphthalene	NS 0.76	4,800 390	67,000 6,500		U	0.015 0.012		U	0.016 0.012		U	0.017	
2-Chlorophenol 2-Methylnaphthalene	3.1	240	3,300	0.65	U	0.0093		U	0.012	0.12	J	0.013	
2-Methylphenol	0.77	320	4,600	0.00	U	0.012		U	0.0034	0.018	J	0.013	
2-Nitroaniline	NS	NS	NS		U	0.025		U	0.026	0.010	Ü	0.027	
2-Nitrophenol	NS	NS	NS		Ü	0.033		Ü	0.034		Ü	0.036	
3,3'-Dichlorobenzidine	3.9	1.2	5.7		U	0.05		U	0.051		U	0.054	
3-Nitroaniline	NS	NS	NS		U	0.079		U	0.08		U	0.085	
4,6-Dinitro-2-methylphenol	NS	NS	NS		U	0.14		U	0.14		U	0.15	
4-Bromophenyl phenyl ether	NS	NS	NS		U	0.013		U	0.013		U	0.014	
4-Chloro-3-methylphenol	NS	NS	NS		U	0.019		U	0.019		U	0.02	
4-Chloroaniline	0.23	2.7	13		U	0.059		U	0.06		U	0.064	
4-Chlorophenyl phenyl ether	NS	NS	NS		U	0.012		U	0.012		U	0.013	
4-Methylphenol	0.75	630	9,100		U	0.021		U	0.021	0.35	J	0.022	
4-Nitroaniline	NS NS	27 NS	130 NS		U	0.038		U	0.039		U	0.041	
4-Nitrophenol Acenaphthene	NS NS	3,600	50,000	1.3	U	0.0095		U	0.0096	0.27	J	0.056	
Acenaphthylene	NS	3,000 NS	30,000 NS	0.062	J	0.0095		U	0.0096	0.32	J	0.01	
Acetophenone	3.6	7,800	130,000	0.002	U	0.016		U	0.0030	0.32	J	0.018	
Anthracene	NS	18,000	250,000	2.4	Ŭ	0.01		U	0.01	0.97	Ť	0.011	
Atrazine	0.33	220	3,200		U	0.02		U	0.02		U	0.021	
Benzaldehyde	NS	170	910		U	0.055		U	0.056	0.22	J	0.059	
Benzidine	NS	NS	NS		U	0.07		U	0.071		U	0.075	
Benzo[a]anthracene	0.71	5.1	23	4		0.025		U	0.025	2.8		0.027	
Benzo[a]pyrene	NS	0.51	2.3	3.6		0.0089		U	0.009	2.5		0.0095	
Benzo[b]fluoranthene	NS	5.1	23	4.5		0.0086		U	0.0087	3.9		0.0093	
Benzo[g,h,i]perylene	NS	NS	NS	2.2		0.0098		U	0.0099	1.3		0.011	
Benzo[k]fluoranthene	NS	51 190	230	1.7		0.0065		U	0.0066	1.3		0.007	
Bis(2-chloroethoxy)methane Bis(2-chloroethyl)ether	NS 0.33	0.63	2,700 3.3		U	0.026		U	0.026		U	0.028	
Bis(2-ethylhexyl) phthalate	14	39	180		U	0.012		U	0.012	0.51	0	0.012	
Butyl benzyl phthalate	29	290	1,300		U	0.016		U	0.016	0.03	J	0.017	
Caprolactam	16	290	1,300		Ü	0.052		U	0.052	2.00	Ü	0.056	
Carbazole	NS	NS	NS	1.3	Ť	0.013		U	0.013	0.35	J	0.014	
Chrysene	NS	510	2,300	3.5		0.014		U	0.014	2.9		0.015	
Dibenz(a,h)anthracene	NS	0.51	2.3	0.59		0.014		U	0.015	0.38		0.016	
Dibenzofuran	NS	NS	NS	1.2		0.011		U	0.011	0.21	J	0.012	
Diethyl phthalate	44	51,000	730,000		U	0.011		U	0.011		U	0.012	
Dimethyl phthalate	NS	NS	NS		U	0.076		U	0.076		U	0.081	
Di-n-butyl phthalate	NS	6,300	91,000		U	0.013	 	U	0.013	0.12	J	0.013	
Di-n-octyl phthalate	NS	630	9,100	7.0	U	0.018		U	0.018	F 0	U	0.019	
Fluoranthene	NS NS	2,400	33,000	7.8		0.012	 	U	0.012	5.8		0.013	
Fluorene	NS 0.17	2,400 0.43	33,000 2.3	1.5	U	0.0098	 	U	0.0098	0.32	J	0.01	
Hexachlorobenzene Hexachlorobutadiene	0.17	8.9	47		U	0.016		U	0.016		U	0.017	
Hexachlorocyclopentadiene	2.5	2.7	7,800		U *+	0.0071		U *+	0.0072		U *+	0.0076	
Hexachloroethane	0.17	17	91		U	0.023		U	0.012		U	0.012	
Indeno[1,2,3-cd]pyrene	NS	5.1	23	2.3	Ĭ	0.013		U	0.012	1.3	Ť	0.012	
Isophorone	0.23	570	2,700		U	0.096		U	0.097		U	0.1	
Naphthalene	19	5.7	27	2.5		0.0058		U	0.0058	0.3	J	0.0062	
Nitrobenzene	0.17	7.5	36		U	0.018		U	0.019		U	0.02	
N-Nitrosodimethylamine	NS	NS	NS		U	0.031		U	0.031		U	0.033	
N-Nitrosodi-n-propylamine	0.17	0.17	0.36		U	0.024		U	0.024		U	0.026	
N-Nitrosodiphenylamine	1.1	110	520		U	0.027		U	0.028		U	0.029	
Pentachlorophenol	0.33	1.0	4.4		U	0.068		U	0.069		U	0.073	
Phenanthrene	NS	NS	NS	11	D	0.027	ļ	U	0.014	3.7		0.015	
Phenol	21	19,000	270,000	7.0	U	0.012		U	0.012	F ^	U	0.013	
Pyrene SVOC TIC Conc. (# TICs)	NS NS	1,800 NS	25,000 NS	7.2		0.0083	0.49 (1)	U	0.0084	5.3 10.72 (11)	-	0.0089	
mg/kg = Milligrams per kilogram	CVI	149	CNI	15.26 (20)	l	l	U.48 (I)		l .	10.12 (11)	l		

mg/kg = Milligrams per kilogram

Exceeds 2021 NJ SRS for the Migration to Groundwater Pathway (SRSMGW)
Exceeds 2021 NJ Residential Soil Remediation Standard (RSRS)
Exceeds 2021 NJ Non-Residential Soil Remediation Standard (NRSRS)

D = Dilluted

H:\Camden Redevelopment Agency\11595-03 Yaffa Block 331 PASI\Tables\Table 4 - 2024-0912 Soil Page 3 of 3

Q = Qualifier; ft bgs = Feet below ground surface NS = No standard; NA = Not analyzed U = Analyzed for but Not Detected at the MDL

J = Concentration detected at a value below the RL and above the MDL

MDL = Method Detection Limit

Exceeds SRSMGW and RSRS

* NRSRS that exceeds SRSMGW

F1 = MS and/or MSD recovery exceeds control limits.

^{*+ =} LCS and/or LCSD is outside acceptance limits, high biased.

^{*1 =} LCS/LCSD RPD exceeds control limits.

TABLE 4C

SEPTEMBER 2024 ANALYTICAL RESULTS - INORGANICS "S. YAFFA AND SONS, INC." 616 CHESTNUT STREET ET AL. ,CITY OF CAMDEN, CAMDEN COUNTY, NJ 08103 BLOCK 331 / NJDEP CSRP. PI # 025881

Montrose Project # 11595-03

Sample ID:				TP2-2024-1.0-1.5 TP3-2024-1.0-1.5							-2024-1.		TP6-2024-1.0-1.5				
Lab ID:	2021 NJ	2021 NJ	2021 NJ Non-	460)-31135		4	60-3113		46	0-31135			-311355	í-5		
	SRSMGW	Residential SRS (RSRS)	Residential SRS (NRSRS)		9/12/24			9/12/2			9/12/24			112/24			
		SKS (KSKS)	SKS (NKSKS)	Conc	1-1.5 Q	MDL	Conc	1-1.5 Q	MDL	Conc	1-1.5 Q	MDL	Conc	1-1.5 Q	MDL		
NJDEP EPH (mg/kg)																	
C10-C12 Aromatics	NS	NS	NS		NA			NA			NA			NA	\Box		
C12-C16 Aliphatics	NS	NS	NS		NA			NA			NA			NA			
C12-C16 Aromatics	NS	NS	NS		NA			NA			NA			NA	<u> </u>		
C16-C21 Aliphatics	NS	NS	NS		NA			NA			NA			NA	<u> </u>		
C16-C21 Aromatics	NS	NS	NS		NA			NA			NA			NA	+		
C21-C36 Aromatic C21-C40 Aliphatics	NS NS	NS NS	NS NS		NA NA			NA NA			NA NA			NA NA	+		
C9-C12 Aliphatics	NS	NS	NS		NA			NA			NA			NA	+		
Total EPH (C9-C40)	NS	5,300	75,000	520	14/3	14		NA		450	14/3	15		NA	+		
Pesticides (mg/kg)	140	0,000	70,000	020				14/3		400		10		14/3	_		
4,4'-DDD	0.47	2.3	11		U	0.0012	0.015		0.0014		NA			NA	$\overline{}$		
4,4'-DDE	0.47	2.0	11	0.049		0.00082	0.051		0.001		NA			NA	†		
4,4'-DDT	0.67	1.9	9.5	0.23		0.0013	0.037	р	0.0016		NA			NA	†		
Aldrin	0.13	0.041	0.21		U	0.001		Ü	0.0013		NA			NA	†		
alpha-BHC	0.0023	0.086	0.41		U	0.0007		U	0.00086		NA			NA	† 		
beta-BHC	0.0046	0.30	1.4		U	0.00078		U	0.00095		NA			NA	†		
Chlordane (technical)	1.4	0.27	1.4		U	0.017		U	0.02		NA			NA	† 		
delta-BHC	NS	NS	NS		Ü	0.00042		U	0.00052		NA		†	NA	 		
Dieldrin	0.024	0.034	0.16		Ü	0.0009	-	U	0.0011		NA		1	NA	+		
Endosulfan I	NS NS	470	7,800		Ü	0.0003		Ü	0.0011		NA		†	NA	 		
Endosulfan II	NS	470	7,800		Ü	0.0018		U	0.0022		NA		†	NA	 		
Endosulfan sulfate	NS	NS	NS		Ü	0.00087		U	0.0011		NA		†	NA	 		
Endrin	1.6	19	270		Ü	0.00099		U	0.0012		NA			NA	† 		
Endrin aldehyde	NS	NS	NS		U	0.0016		U	0.002		NA			NA	† 		
Endrin ketone	NS	NS	NS		U	0.0013		U	0.0016		NA			NA	† 		
gamma-BHC (Lindane)	0.0035	0.57	2.8		Ü	0.00064		U	0.00078		NA			NA	+		
Heptachlor	0.083	0.15	0.81		Ü	0.00082		U	0.001		NA			NA	+		
Heptachlor epoxide	0.081	0.076	0.40	0.0079		0.001		U	0.0013		NA			NA	† 		
Methoxychlor	NS	320	4,600	0.0070	U	0.0016		Ü	0.0019		NA			NA	† 		
Toxaphene	6.2	0.49	2.3		U	0.025		U	0.03		NA			NA	† 		
Herbicides (mg/kg)	0.2	0.10	2.0			0.020			0.00								
2,4,5-T	NS	NS	NS		U	0.0073	1	U	0.0089		NA		1	NA	$\overline{}$		
2,4-D	NS	NS	NS		Ü	0.013		U	0.015		NA			NA	+		
Silvex (2,4,5-TP)	NS	NS	NS		Ü	0.0036		U	0.0044		NA			NA	+		
PCBs (mg/kg)	140	140	140			0.0000	l .		0.0044		140-3		1	14/3	_		
Aroclor 1016	NS	NS	NS		U	0.018	1	NA	1		NA		1	NA	$\overline{}$		
Aroclor 1221	NS	NS	NS		Ü	0.018		NA			NA			NA	+		
Aroclor 1232	NS	NS	NS		Ü	0.018		NA			NA			NA	+		
Aroclor 1242	NS	NS	NS		Ü	0.018		NA			NA		1	NA	+		
Aroclor 1248	NS	NS	NS		Ü	0.018		NA			NA			NA	+		
Aroclor 1254	NS	NS	NS		Ü	0.018		NA			NA			NA	+		
Aroclor 1260	NS	NS	NS		Ü	0.018		NA			NA			NA	+		
Aroclor 1268	NS	NS	NS		U	0.018		NA			NA			NA	+		
Aroclor-1262	NS	NS	NS		Ü	0.018		NA			NA		1	NA	+		
Total PCBs	1.6	0.25	1.1		U	0.018		NA			NA			NA	+		
Metals (mg/kg)	1.0	0.25	1.1			0.016	<u> </u>	INA	l		INA		1	INA			
Aluminum	NS	78,000	NS	5,720	1	4.4	1	NA	1	3,640		4.9	12,200		4.8		
Antimony	5.4	31	520	0.95		0.12		NA		0.69	J	0.13	1.4		0.13		
Arsenic	19	19	19	6.3	-	0.12	-	NA NA	 	10.2	J	0.13	6.7		0.13		
Barium	2,100	16,000	260,000	166	-	0.083	-	NA NA	 	218		0.092	157		0.09		
	0.70	160	2,600	0.31	.I	0.12	1	NA NA		0.28	J	0.13	0.54		0.13		
Beryllium Cadmium	1.9	71	1,100	1.2	J	0.046	-	NA NA	 	1.4	J	0.051	0.54 3		0.05		
Calcium	NS	NS	1,100 NS	4,670	-	32.9	-	NA NA	 	2,480		36.5	11,500		35.6		
	NS	NS	NS NS	24.3	-	0.73	-	NA NA	 	16.1		0.81	92		0.79		
Chromium Cobalt	90	23	390	3.7	 	0.73	 	NA NA	-	3.6		0.81	9.8		0.79		
	910	3,100	52,000	59.9	-	0.12	1	NA NA		71		0.13	376		0.13		
Copper	910 NS				 		 		-						17.7		
Iron Lead **		NS 200	NS 900	14,800		16.3		NA NA		13,500		18.1	27,500				
	90 NS	200 NS	800 NS	586 1,460	-	0.16 8.3	 	NA NA	-	757 1,420		0.18 9.1	596 4600		0.17		
Magnesium	NS NS	1,900	31,000	1,460	-		-	NA NA	 	99.1		0.36	318		8.9 0.35		
Manganese Mercury	0.10	1,900	31,000	145	-	0.33	-	NA NA	 	99.1 1.1		0.36	0.67		0.009		
Nickel	48	1,600	26,000	40.1	-	0.04	-	NA NA		11.6		0.42	175		0.009		
					 		 		-								
Potassium	NS	NS 200	NS c.coo	480		13.1	 	NA	 	463	— —	14.5	1,700	— —	14.2		
Selenium	11	390	6,500	0.59	J	0.1	<u> </u>	NA		0.55	J	0.11	0.36	J	0.11		
Silver	0.50	390	6,500	0.33	<u> </u>	0.072	<u> </u>	NA		0.35	J	0.08	0.67		0.078		
Sodium	NS	NS	NS	68.5	J	37	.	NA		90.6	<u> </u>	41	1,840	<u> </u>	40		
Thallium	NS	NS	NS	0.082	J	0.033	 	NA		0.2	J	0.037	0.14	J	0.036		
Vanadium	NS	390	6,500	18.1	<u> </u>	0.17		NA		13.9		0.18	28.1		0.18		
Zinc	930	23,000	390,000	259	<u> </u>	2.5	<u> </u>	NA	<u> </u>	430		2.7	1,390		2.7		
Metals (mg/kg)																	
Hexavalent Chromium	NS	240	20		U	0.87		NA			NA			U	0.9		

mg/kg = Milligrams per kilogram

Q = Qualifier; ft bgs = Feet below ground surface

NS = No standard; NA = Not analyzed U = Analyzed for but Not Detected at the MDL

J = Concentration detected at a value below the RL and above the MDL

MDL = Method Detection Limit

MDL = Method Detection Limit
Exceeds 2021 NJ SRS for the Migration to Groundwater Pathway (SRSMGW)
Exceeds 2021 NJ Residential Soil Remediation Standard (RSRS)

Exceeds 2021 NJ Non-Residential Soil Remediation Standard (NRSRS)

Exceeds SRSMGW and RSRS

MDL exceeds a standard

* Exceeds NRSRS and SRSMGW

Lead** = NJAC 7:26D was amended on May 6,2024. The lead ingestion-dermal exposure pathway was updated from 400 mg/kg to 200 mg/kg. F1 = MS and/or MSD recovery exceeds control limits.

*+ = LCS and/or LCSD is outside acceptance limits, high biased.

*1 = LCS/LCSD RPD exceeds control limits.

p = The %RPD between the primary and confirmation column/detector is >40%. The lower value has been reported.

H = Sample was prepped or analyzed beyond the specified holding time. This does not meet regulatory requirements.

Page 1 of 3

TABLE 4C

SEPTEMBER 2024 ANALYTICAL RESULTS - INORGANICS "S. YAFFA AND SONS, INC." 616 CHESTNUT STREET ET AL. ,CITY OF CAMDEN, CAMDEN COUNTY, NJ 08103 BLOCK 331 / NJDEP CSRP. PI # 025881

Montrose Project # 11595-03

Sample ID: Lab ID: Date Sampled:	2021 NJ	2021 NJ Residential	2021 NJ Non- Residential		-2024-1. 0-31135 9/12/24	5-3		8-2024-8 60-3113 9/12/2	55-4		-2024-1 0-31135 9/12/24	5-6
Sample Depth (ft bgs):	SRSMGW	SRS (RSRS)	SRS (NRSRS)		1-1.5			8-8.5			1-1.5	
, , , , , , , , , , , , , , , , , , ,				Conc	Q	MDL	Conc	Q	MDL	Conc	Q	MDL
IJDEP EPH (mg/kg)												
C10-C12 Aromatics	NS	NS	NS		U	11		NA			NA	
C12-C16 Aliphatics	NS	NS	NS	63		45		NA			NA	
C12-C16 Aromatics	NS	NS	NS		U	17		NA			NA	
C16-C21 Aliphatics	NS	NS	NS	160		45		NA			NA	
C16-C21 Aromatics	NS	NS	NS	89		28		NA			NA	
21-C36 Aromatic	NS	NS	NS	370		45		NA			NA	
C21-C40 Aliphatics	NS	NS	NS	1,200		160		NA			NA	
09-C12 Aliphatics	NS	NS	NS	1,200	U	67		NA			NA	
otal EPH (C9-C40)	NS	5,300	75,000	4,000		310	23		14	77		14
Pesticides (mg/kg)	140	0,000	70,000	4,000		010	20			- ''		17
,4'-DDD	0.47	0.0	- 44	0.40	1	0.0040		110			U	0.004
	0.47	2.3	11	0.12		0.0013		NA				0.0011
,4'-DDE	0.47	2.0	11		U	0.00088		NA			U	0.0008
,4'-DDT	0.67	1.9	9.5		U	0.0014		NA			U	0.0012
Aldrin	0.13	0.041	0.21		U	0.0011		NA			U	0.001
lpha-BHC	0.0023	0.086	0.41		U	0.00076		NA			U	0.0006
eta-BHC	0.0046	0.30	1.4		U	0.00084		NA			U	0.0007
	1.4	0.30	1.4		U	0.00004		NA			U	0.0007
Chlordane (technical)												
lelta-BHC	NS	NS	NS		U	0.00046		NA			U	0.0004
Dieldrin	0.024	0.034	0.16		U	0.00097		NA			U	0.0008
ndosulfan I	NS	470	7,800		U	0.0011		NA			U	0.001
ndosulfan II	NS	470	7,800		U	0.0019		NA			U	0.0017
ndosulfan sulfate	NS	NS	NS		U	0.00094		NA			Ü	0.0008
Indrin	1.6	19	270		U	0.00034		NA			U	0.0000
							-			-		
ndrin aldehyde	NS	NS	NS		U	0.0018		NA			U	0.0016
ndrin ketone	NS	NS	NS		U	0.0015		NA			U	0.001
amma-BHC (Lindane)	0.0035	0.57	2.8		U	0.00069		NA			U	0.0006
leptachlor	0.083	0.15	0.81		U	0.00088		NA			U	0.000
leptachlor epoxide	0.081	0.076	0.40		U	0.0011		NA			U	0.001
Methoxychlor	NS	320	4,600		U	0.0017		NA			U	0.001
oxaphene	6.2	0.49	2.3		U	0.027		NA			U	0.024
lerbicides (mg/kg)												
2,4,5-T	NS	NS	NS		U	0.0079		NA			U	0.007
,4-D	NS	NS	NS		U	0.014		NA			U	0.012
Silvex (2,4,5-TP)	NS	NS	NS		U	0.0039		NA			U	0.0035
	140	140	140			0.0003		14/3				0.0000
PCBs (mg/kg)		110	110		·						·	
Aroclor 1016	NS	NS	NS		U	0.4		U	0.018		U	0.018
Aroclor 1221	NS	NS	NS		U	0.4		U	0.018		U	0.018
Aroclor 1232	NS	NS	NS		U	0.4		U	0.018		U	0.018
Aroclor 1242	NS	NS	NS		U	0.4		U	0.018		U	0.018
Aroclor 1248	NS	NS	NS	15		0.4	0.21		0.018		U	0.018
Aroclor 1254	NS	NS	NS		U	0.4	0.2.	U	0.018		U	0.018
				0.4	- 0							
Aroclor 1260	NS	NS	NS	2.4		0.4		U	0.018		U	0.018
Aroclor 1268	NS	NS	NS		U	0.4		U	0.018		U	0.018
Aroclor-1262	NS	NS	NS		U	0.4		U	0.018		U	0.018
otal PCBs	1.6	0.25	1.1	17 *		0.4	0.21		0.018		U	0.018
fletals (mg/kg)												
Aluminum	NS	78,000	NS	8,010		4.8	3,890		4.1	3,540		4.3
					 			<u> </u>			-	
Antimony	5.4	31	520	39.4	<u> </u>	0.13	0.15	J	0.11	0.24	J	0.11
Arsenic	19	19	19	19.1*		0.089	3		0.077	7.9		0.081
Barium	2,100	16,000	260,000	1,360	L_ ⁻	0.13	25.2		0.11	59.3	L_ ⁻	0.11
Beryllium	0.70	160	2,600	0.55		0.049	0.16	J	0.043	0.21	J	0.045
Cadmium	1.9	71	1,100	22.2		0.098	0.13	,J	0.085	0.18	J,	0.089
Calcium	NS	NS	NS	55,700		35.3	835	<u> </u>	30.6	586	T T	32
Chromium	NS	NS	NS	804	-	0.79	268		0.68	7.8	-	0.71
					 			-			 	
Cobalt	90	23	390	120		0.13	4.9		0.11	2.4		0.12
Copper	910	3,100	52,000	1,510	<u> </u>	0.32	24.4		0.28	16.5	<u> </u>	0.29
ron	NS	NS	NS	115,000	l	175	9,620		15.2	6,440		15.9
ead **	90	200	800	7,330*		1.7	56.3		0.15	133		0.16
Magnesium	NS	NS	NS	32,300		8.9	1,050		7.7	717	l -	8
											-	
Manganese	NS	1,900	31,000	1,040	 	0.35	41.9	-	0.3	59.6	 	0.32
Mercury	0.10	23	390	7.4		0.88	0.45		0.0081	0.44		0.007
lickel	48	1,600	26,000	2,630		4.1	133		0.35	5.6		0.37
otassium	NS	NS	NS	906		14.1	612		12.2	296		12.7
Selenium	11	390	6,500	0.81	J	0.11	0.15	J	0.096	0.27	J	0.1
	0.50	390	6,500	4.3	Ť	0.077	0.13	J	0.067	0.14	J	0.07
	U.3U				 							
Silver	NIO				1	39.7	57	J		41.7	J	36
Silver Sodium	NS	NS	NS	3,050			Ŭ.		34.3			
ilver Sodium Thallium	NS	NS	NS	0.092	J	0.036		Ü	0.031	0.06	J	0.032
ilver odium					J		8.4					0.032
ilver odium hallium	NS	NS	NS	0.092	J	0.036			0.031	0.06		

mg/kg = Milligrams per kilogram
Q = Qualifier; ft bgs = Feet below ground surface

NS = No standard; NA = Not analyzed

U = Analyzed for but Not Detected at the MDL

J = Concentration detected at a value below the RL and above the MDL

MDL = Method Detection Limit

Exceeds 2021 NJ SRS for the Migration to Groundwater Pathway (SRSMGW)

Exceeds 2021 NJ Residential Soil Remediation Standard (RSRS)

Exceeds 2021 NJ Non-Residential Soil Remediation Standard (NRSRS)

Exceeds SRSMGW and RSRS

MDL exceeds a standard

MDL exceeds a standard

* Exceeds NRSRS and SRSMGW
Lead** = NJAC 7:26D was amended on May 6 ,2024. The lead ingestion-dermal exp F1 = MS and/or MSD recovery exceeds control limits.

*+ = LCS and/or LCSD is outside acceptance limits, high biased.

*1 = LCS/LCSD RPD exceeds control limits.

p = The %RPD between the primary and confirmation column/detector is >40%. The

H = Sample was prepped or analyzed beyond the specified holding time. Th

Page 2 of 3

TABLE 4C

SEPTEMBER 2024 ANALYTICAL RESULTS - INORGANICS "S. YAFFA AND SONS, INC." 616 CHESTNUT STREET ET AL. ,CITY OF CAMDEN, CAMDEN COUNTY, NJ 08103 BLOCK 331 / NJDEP CSRP. PI # 025881 Montrose Project # 11595-03

Sample ID: Lab ID:	2021 NJ	2021 NJ	2021 NJ Non-		-2024-1. 0-311355 9/12/24			0-31135	5-8		2024-1 31135 /12/24	55-9
Date Sampled: Sample Depth (ft bgs):	SRSMGW	Residential	Residential SRS (NRSRS)		1-1.5			9/12/24 8-8.5	,		/12/24 1-1.5	,
Sample Depth (It bys).		ono (nono)	ono (mnono)	Conc	Q Q	MDL	Conc	Q	MDL	Conc	Q	MDL
NJDEP EPH (mg/kg)		•										
C10-C12 Aromatics	NS	NS	NS		NA			NA			NA	
C12-C16 Aliphatics	NS	NS	NS		NA			NA			NA	
C12-C16 Aromatics	NS	NS	NS		NA			NA			NA	
C16-C21 Aliphatics	NS	NS	NS		NA			NA			NA	
C16-C21 Aromatics	NS	NS	NS		NA			NA			NA	
C21-C36 Aromatic	NS	NS	NS		NA			NA			NA	
C21-C40 Aliphatics	NS	NS	NS		NA			NA			NA	
C9-C12 Aliphatics	NS	NS	NS		NA			NA			NA	
Total EPH (C9-C40)	NS	5,300	75,000	27		14		U	14	1,200		150
Pesticides (mg/kg)												
4,4'-DDD	0.47	2.3	11		NA			NA			U	0.0012
4,4'-DDE	0.47	2.0	11		NA			NA			U	0.00085
4,4'-DDT	0.67	1.9	9.5		NA			NA			U	0.0013
Aldrin	0.13	0.041	0.21		NA			NA		0.011		0.0011
alpha-BHC	0.0023	0.086	0.41		NA			NA			U	0.00074
beta-BHC	0.0046	0.30	1.4		NA			NA			U	0.00081
Chlordane (technical)	1.4	0.27	1.4		NA			NA			U	0.018
delta-BHC	NS	NS	NS		NA			NA			U	0.00044
Dieldrin	0.024	0.034	0.16		NA			NA			U	0.00094
Endosulfan I	NS	470	7,800		NA			NA			U	0.0011
Endosulfan II	NS	470	7,800		NA			NA	1		Ü	0.0019
Endosulfan sulfate	NS	NS	NS		NA			NA	1		U	0.00091
Endrin	1.6	19	270		NA			NA	 		U	0.00091
	NS	NS NS	NS NS		NA			NA			U	0.0017
Endrin aldehyde Endrin ketone	NS NS	NS	NS NS		NA			NA	1		U	0.0017
	0.0035											
gamma-BHC (Lindane)		0.57	2.8		NA			NA			U	0.00067
Heptachlor	0.083	0.15	0.81		NA			NA			U	0.00085
Heptachlor epoxide	0.081	0.076	0.40		NA			NA			U	0.0011
Methoxychlor	NS	320	4,600		NA			NA			U	0.0017
Toxaphene	6.2	0.49	2.3		NA			NA			U	0.026
Herbicides (mg/kg)												
2,4,5-T	NS	NS	NS		NA			NA			U	0.0077
2,4-D	NS	NS	NS		NA			NA			U	0.013
Silvex (2,4,5-TP)	NS	NS	NS		NA			NA			U	0.0038
PCBs (mg/kg)												
Aroclor 1016	NS	NS	NS		NA			NA			U	0.019
Aroclor 1221	NS	NS	NS		NA			NA			U	0.019
Aroclor 1232	NS	NS	NS		NA			NA			U	0.019
Aroclor 1242	NS	NS	NS		NA			NA			U	0.019
Aroclor 1248	NS	NS	NS		NA			NA			Ü	0.019
Aroclor 1254	NS	NS	NS		NA			NA			U	0.019
Aroclor 1260	NS	NS	NS		NA			NA		0.44	0	0.019
										0.44	-	
Aroclor 1268	NS	NS	NS		NA			NA			U	0.019
Aroclor-1262	NS	NS	NS		NA			NA			U	0.019
Total PCBs	1.6	0.25	1.1		NA			NA		0.44		0.019
Metals (mg/kg)												
Aluminum	NS	78,000	NS	4,220		4.9	3,770		5.6	9,570		11.2
Antimony	5.4	31	520		U	0.13		U F1	0.15	3		0.3
Arsenic	19	19	19	3.1		0.093	3.2		0.11	8.9		0.21
Barium	2,100	16,000	260,000	56.7		0.13	5.1		0.15	134		0.3
Beryllium	0.70	160	2,600	0.21	J	0.051	0.24	J	0.058	0.4	J	0.12
Cadmium	1.9	71	1,100	0.14	J	0.1		U	0.12	6.4		0.23
Calcium	NS	NS	NS	743		36.7	309		41.5	22,900		83.3
Chromium	NS	NS	NS	8.2		0.82	7.2		0.93	1,650		1.9
Cobalt	90	23	390	2.1		0.13	2		0.15	30.3		0.3
Copper	910	3,100	52,000	9.4		0.33	5.9		0.38	379		0.75
Iron	NS	NS	NS	8,130		18.2	7,810		20.6	48,800		41.3
Lead **	90	200	800	81.5	1	0.18	2.8		0.2	584		0.41
Magnesium	NS	NS	NS	818		9.2	951		10.4	3,260		20.9
Manganese	NS	1,900	31,000	120	1	0.36	38.2		0.41	358		0.82
Mercury	0.10	23	390	0.24		0.0078	00.2	U	0.0078	0.9		0.041
Nickel	48	1,600	26,000	4.6		0.0078	4.9	-	0.0078	1,340		0.041
		1,600 NS	26,000 NS	346	-		597		16.5	604		33.1
Potassium	NS 44				<u> </u>	14.6	597	- , .			.	
Selenium	11	390	6,500	0.15	J	0.12		U	0.13	0.57	J	0.26
Silver	0.50	390	6,500		U	0.08		U	0.091	0.73	J	0.18
Sodium	NS	NS	NS		U	41.2		U	46.6	95.1	J	93.5
Thallium	NS	NS	NS	0.042	J	0.037		U	0.042		U	0.084
Vanadium	NS	390	6,500	8.6		0.19	9.3		0.21	17.1		0.42
Zinc	930	23,000	390,000	70.4		2.7	19.4		3.1	764		6.2
Metals (mg/kg)												
Hexavalent Chromium	NS	240	20		NA			NA			U	0.91
mg/kg = Milligrams per kilogram												

Exceeds 2021 NJ SRS for the Migration to Groundwater Pathway (SRSMGW)

Exceeds 2021 NJ Residential Soil Remediation Standard (RSRS)

Exceeds 2021 NJ Non-Residential Soil Remediation Standard (NRSRS)

Exceeds SRSMGW and RSRS

MDL exceeds a standard

**Exceeds NRSRS and SRSMGW
Lead** = NJAC 7:26D was amended on May 6 ,2024. The lead ingestion-dermal exp

F1 = MS and/or MSD recovery exceeds control limits.

Page 3 of 3

mg/kg = Milligrams per kilogram
Q = Qualifier; ft bgs = Feet below ground surface

NS = No standard; NA = Not analyzed U = Analyzed for but Not Detected at the MDL

J = Concentration detected at a value below the RL and above the MDL

MDL = Method Detection Limit

^{*+ =} LCS and/or LCSD is outside acceptance limits, high biased.

^{*1 =} LCS/LCSD RPD exceeds control limits.

p = The %RPD between the primary and confirmation column/detector is >40%. The

H = Sample was prepped or analyzed beyond the specified holding time. Th

TABLE 4D SEPTEMBER 2024 SPLP ANALYTICAL RESULTS

"S. YAFFA AND SONS, INC." 616 CHESTNUT STREET, CITY OF CAMDEN, CAMDEN COUNTY, NJ 08103 BLOCK 331 / NJDEP CSRRP PI # 025881 Montrose Project # 11595-03

Sample ID:		2021 NJ	2021 NJ Non-		-2024-1.			3-2024-			-2024-1.			2024-1.			-2024-1	
Lab ID:	2021 NJ	Residential	Residential	460	0-31135		46	60-3113		46	0-31135			-31135	5-5	46	0-31135	
Date Sampled:	SRSMGW	SRS	SRS		9/12/24			9/12/2	4		9/12/24		,	9/12/24			9/12/24	,
Sample Depth (ft bgs):	O.CO.IIIO	(RSRS)	(NRSRS)		1-1.5			1-1.5			1-1.5			1-1.5			1-1.5	
		(110110)	()	Conc	Q	MDL	Conc	Q	MDL	Conc	Q	MDL	Conc	Q	MDL	Conc	Q	MDL
SPLP Semi-Volatiles (µg/L)																		
2-Methylnaphthalene	NS	NS	NS		U	0.73		NA			UH	0.73		NA			U	0.73
Benzo[a]anthracene	NS	NS	NS		U	0.81		NA			UН	0.81		U	0.81		NA	
Benzo[a]pyrene	NS	NS	NS		U	0.37		NA			UН	0.37		U	0.37		NA	
Benzo[b]fluoranthene	NS	NS	NS		U	0.37		NA			UН	0.37		NA			NA	
Dibenz(a,h)anthracene	NS	NS	NS		U	1		NA			UН	1		U	1		NA	
Indeno[1,2,3-cd]pyrene	NS	NS	NS		U	0.65		NA			UН	0.65		U	0.65		NA	
Naphthalene	NS	NS	NS		U	0.21		NA			UН	0.21		U	0.21		NA	l
SPLP Metals (µg/L)																		
Antimony	NS	NS	NS		NA			NA			NA			NA		28.6		0.76
Cadmium	NS	NS	NS		NA			NA			NA			NA			U	0.39
Cobalt	NS	NS	NS		NA			NA			NA			NA			U	0.71
Copper	NS	NS	NS		NA			NA			NA			NA		23.2		2.5
Lead	NS	NS	NS	43.5		0.84		NA		96		0.84		NA		15.9		0.84
Mercury	NS	NS	NS	0.13	J	0.091		NA		0.25		0.091		NA			U	0.091
Nickel	NS	NS	NS		NA			NA			NA			NA		57.6		0.91
Silver	NS	NS	NS		NA			NA			NA			NA			U	0.29
Zinc	NS	NS	NS		NA			NA			NA		28.7		6.5	10.4	J	6.5
SPLP																		
Sample Initial Amt (Kg)	NS	NS	NS	0.1				NA		0.10007			0.1001			0.10004		
Leachate Final pH (SU)	NS	NS	NS	9.74				NA		10.19			9.28			9.13		

NA

Leachate Final Amt (L)
μg/L = Micrograms per Liter

ft bgs = Feet below ground surface

Q = Qualifier; Kg = Kilogram; SU = Standard Units; L = Liters

NS = No standard; NA: Not analyzed

U = Analyzed for but Not Detected at the MDL

J = Concentration detected at a value below the RL and above the MDL

MDL = Method Detection Limit

 $\mbox{\ensuremath{\mathsf{H}}}$ = Sample was prepped or analyzed beyond the specified holding time.

TABLE 4D SEPTEMBER 2024 SPLP ANALYTICAL RESULTS

"S. YAFFA AND SONS, INC." 616 CHESTNUT STREET, CITY OF CAMDEN, CAMDEN COUNTY, NJ 08103 BLOCK 331 / NJDEP CSRRP PI # 025881 Montrose Project # 11595-03

Sample ID:				TP8	3-2024-8	3.0-8.5	TP9	-2024-1.	0-1.5	TP11-	-2024-1.	0-1.5	TP11	-2024-8	3.0-8.5	TP12-2	2024-1	.0-1.5
Lab ID:		2021 NJ	2021 NJ Non-	40	60-3113	55-4	46	0-31135	5-6	460	-31135	5-7	460	0-31135	5-8	460-	31135	5-9
Date Sampled:	2021 NJ	Residential	Residential		9/12/2	4		9/12/24			9/12/24			9/12/24		9	/12/24	
Sample Depth (ft bgs):	SRSMGW	SRS	SRS		8-8.5			1-1.5			1-1.5			8-8.5			1-1.5	
		(RSRS)	(NRSRS)	Conc	Q	MDL	Conc	Q	MDL	Conc	Q	MDL	Conc	Q	MDL	Conc	Q	MDL
SPLP Semi-Volatiles (µg/L)																		
2-Methylnaphthalene	NS	NS	NS		NA			NA			U	0.73		NA			NA	
Benzo[a]anthracene	NS	NS	NS		NA			NA			U	0.81		NA			NA	
Benzo[a]pyrene	NS	NS	NS		NA			NA			U	0.37		NA			NA	
Benzo[b]fluoranthene	NS	NS	NS		NA			NA			U	0.37		NA			U	0.37
Dibenz(a,h)anthracene	NS	NS	NS		NA			NA			U	1		NA			NA	
Indeno[1,2,3-cd]pyrene	NS	NS	NS		NA			NA			U	0.65		NA			NA	
Naphthalene	NS	NS	NS		NA			NA			U	0.21		NA			NA	
SPLP Metals (µg/L)																		
Antimony	NS	NS	NS		NA			NA			NA			NA		2		0.76
Cadmium	NS	NS	NS		NA			NA			NA			NA			U	0.39
Cobalt	NS	NS	NS		NA			NA			NA			NA			U	0.71
Copper	NS	NS	NS		NA			NA			NA			NA			NA	
Lead	NS	NS	NS		NA			NA			NA			NA			NA	
Mercury	NS	NS	NS		NA			NA			NA			NA			NA	
Nickel	NS	NS	NS		NA			NA			NA			NA		4.3		0.91
Silver	NS	NS	NS		NA			NA			NA			NA			U	0.29
Zinc	NS	NS	NS		NA			NA			NA			NA			NA	
SPLP																		
Sample Initial Amt (Kg)	NS	NS	NS		NA			NA		0.10003				NA		0.10001		
Leachate Final pH (SU)	NS	NS	NS		NA			NA		9.94				NA		9.15		
Leachate Final Amt (L)	NS	NS	NS		NA			NA		2				NA		2		

μg/L = Micrograms per Liter

ft bgs = Feet below ground surface

Q = Qualifier; Kg = Kilogram; SU = Standard Units; L = Liters

NS = No standard; NA: Not analyzed

U = Analyzed for but Not Detected at the MDL

J = Concentration detected at a value below the RL and above the MDL

MDL = Method Detection Limit

H = Sample was prepped or analyzed beyond the specified holding time.

TABLE 5 - MONITORING WELL CONSTRUCTION SUMMARY "S YAFFA AND SONS, INC."

616 CHESTNUT STREET ET AL., CITY OF CAMDEN, CAMDEN COUNTY, NJ 08103 Block: 331 / NJDEP CSRRP PI # 025881

Montrose Project # 11595-03

Name	Date Installed	Permit Number	Top of Screen (feet bgs)	Total Depth (feet bgs)	Well Diameter (inches)	Well Material
MW-1	9/5/24	E202409317	7	17	2	PVC
MW-2	9/5/24	E202409321	5	15	2	PVC
MW-3	9/5/24	E202409319	7	17	2	PVC

Name	State Plane NAI	Coordinates D 83	Coord	linates	TOC Elevation (feet above MSL)	Groundwater Elevation (feet above MSL)
	Northing (Y)	Easting (X)	Latitude (N)	Longitude (W)	(leet above MOL)	
MW-1	400,882.9	319,028.6	39° 55′ 56.56"	-75° 07′ 02.25"	24.77	10.82
MW-2	400,842.4	319,274.0	39° 55′ 56.18"	-75° 06′ 59.10"	23.63	9.33
MW-3	400,704.8	319,020.4	39° 55′ 54.80"	-75° 07′ 02.34"	23.90	9.66

bgs = Below ground surface

MSL = Mean Sea Level

TOC = Top of inner (PVC) casing

Wells are finished as stickups and have steel well protector

Elevation data and well construction obtained from Vargo Associates

Guaging and sample event on September 23, 2024

TABLE 6A SEPTEMBER 2024 - ANALYTICAL GROUNDWATER RESULTS - VOLATILES

"S. YAFFA AND SONS, INC."

616 CHESTNUT STREET ET AL.

CITY OF CAMDEN, CAMDEN COUNTY, NJ 08103 BLOCK 331 / NJDEP CSRRP PI # 025881 Montrose Project # 11595-03

Sample ID:				MW-1			MW-2			MW-3		F	B-24092	23		ТВ	
Lab ID:	NJDEP GWQS	NJDEP VI	46	0-31199	1-3	46	0-31199	1-1	46	0-31199	1-2		0-31199	-	46	0-31199	1-5
Date Sampled:	for Class IIA	GWSLs		9/23/24	. •		9/23/24			9/23/24			9/23/24			9/23/24	
Groundwater Depth (feet btoc):		(µg/L)		13.95			14.30			14.24	<u> </u>		NA			NA	
Groundwater Deptir (leet bloc).	, (quiioio (µg. =)	(1-9/-)	Conc	Q	MDL	Conc	Q Q	MDL	Conc	Q	MDL	Conc	Q	MDL	Conc	Q	MDL
Volatile Organics by 8260 (µg/L)			COLIC	- W	WIDL	COILC		MIDL	COILC	- W	MIDE	COLIC	- u	WIDE	COILC		INDL
1.1.1-Trichloroethane	30	13.000		U	0.24	l	U	0.24	l	U	0.24	l	U	0.24		U	0.24
1,1,2,2-Tetrachloroethane	1	NS		U	0.37		U	0.37		Ü	0.37		Ü	0.37		Ü	0.37
1.1.2-Trichloroethane	3	NS		U	0.2		U	0.2		Ü	0.2		Ü	0.2		U	0.2
1,1-Dichloroethane	50	NS		Ü	0.26		Ü	0.26		Ü	0.26		Ü	0.26		U	0.26
1,1-Dichloroethene	1	26		Ü	0.26		Ü	0.26		Ü	0.26		Ü	0.26		Ü	0.26
1,2,3-Trichlorobenzene	NS	NS		Ü	0.36		Ü	0.36	1		0.36		Ü	0.36		Ü	0.36
1,2,4-Trichlorobenzene	9	130		Ü	0.37		Ü	0.37	4.3		0.37		Ü	0.37		Ü	0.37
1,2-Dichlorobenzene	600	6,800		Ü	0.21		Ü	0.21		U	0.21		Ü	0.21		Ü	0.21
1,2-Dichloroethane	2	230		Ü	0.43		Ü	0.43		Ü	0.43		Ü	0.43		Ü	0.43
1,2-Dichloropropane	1	11		Ü	0.35		Ü	0.35		Ü	0.35		Ü	0.35		Ü	0.35
1.3-Dichlorobenzene	600	NS		Ü	0.34		Ü	0.34		Ü	0.34		Ü	0.34		Ū	0.34
1,4-Dichlorobenzene	75	21.000		Ü	0.33		Ü	0.33		Ü	0.33		Ü	0.33		Ū	0.33
2-Butanone (MEK)	300	2,500,000		Ü	1.9		Ü	1.9		Ü	1.9		Ü	1.9		Ü	1.9
2-Hexanone	40	NS		Ü	1.1		Ü	1.1		Ü	1.1		Ü	1.1		Ü	1.1
4-Methyl-2-pentanone (MIBK)	NS	900.000		Ü	1.3		Ü	1.3		Ü	1.3		Ü	1.3		Ü	1.3
Acetone	6.000	NS		Ü	4.4		Ü	4.4		Ü	4.4		Ü	4.4		Ü	4.4
Benzene	1	23		Ü	0.2		Ü	0.2		Ü	0.2		Ü	0.2		Ü	0.2
Bromochloromethane	NS	NS		Ü	0.41		Ü	0.41		Ü	0.41		Ü	0.41		Ü	0.41
Bromodichloromethane	1	NS	0.57	J	0.34		Ü	0.34		Ü	0.34		Ü	0.34		Ü	0.34
Bromoform	4	NS		Ü	0.54		Ü	0.54		Ü	0.54		Ü	0.54		Ü	0.54
Bromomethane	10	20		Ü	0.55		Ü	0.55		Ü	0.55		Ü	0.55		Ü	0.55
Carbon disulfide	700	1.500		Ü	0.82		Ü	0.82		Ü	0.82		Ü	0.82		Ü	0.82
Carbon tetrachloride	1	1.0		Ü	0.21		Ü	0.21		Ü	0.21		Ü	0.21		Ü	0.21
Chlorobenzene	50	770		Ü	0.38		Ü	0.38		Ü	0.38		Ü	0.38		Ü	0.38
Chlorodibromomethane	1	NS		Ü	0.28		Ü	0.28		Ü	0.28		Ü	0.28		Ü	0.28
Chloroethane	NS	26.000		Ü	0.32		Ü	0.32		Ü	0.32		Ü	0.32		Ü	0.32
Chloroform	70	1.000	3.9		0.33		Ü	0.33		Ü	0.33		Ü	0.33		Ü	0.33
Chloromethane	NS	240		U	0.4		Ü	0.4		Ü	0.4		Ü	0.4		Ü	0.4
cis-1.2-Dichloroethene	70	NS		Ü	0.22		Ü	0.22		Ü	0.22		Ü	0.22		Ü	0.22
cis-1,3-Dichloropropene	NS	8.4		Ü	0.22		Ü	0.22		Ü	0.22		Ü	0.22		Ü	0.22
Cyclohexane	NS	16,000		Ü	0.32		Ü	0.32		Ü	0.32		Ü	0.32		Ü	0.32
Dichlorodifluoromethane	1,000	NS		Ü	0.31		Ü	0.31		Ü	0.31		Ü	0.31		Ü	0.31
Ethylbenzene	700	700		Ü	0.3		Ü	0.3		Ü	0.3		Ü	0.3		Ü	0.3
Freon TF	20,000	20,000		Ü	0.31		Ü	0.31		Ü	0.31		Ü	0.31		Ü	0.31
Isopropylbenzene	700	NS		U	0.34		U	0.34		U	0.34		U	0.34		U	0.34
Methyl acetate	7,000	NS		U	0.79		U	0.79		U	0.79		U	0.79		U	0.79
Methylcyclohexane	NS	NS		U	0.71		U	0.71		U	0.71		U	0.71		U	0.71
Methylene Chloride	3	2,600		U	0.32		U	0.32		U	0.32		U	0.32		U	0.32
Methyl tert-butyl ether	70	690		U	0.22		U	0.22		U	0.22		U	0.22		U	0.22
Styrene	100	180,000		U	0.42		U	0.42		U	0.42		U	0.42		U	0.42
Tert-butyl Alcohol	100	NS		U	8.3	9.6	J	8.3		U	8.3		U	8.3		U	8.3
Tetrachloroethene	1	36		U	0.25		U	0.25	1.3 *		0.25		U	0.25		U	0.25
Toluene	600	330,000		U	0.38		U	0.38		U	0.38		U	0.38		U	0.38
trans-1,2-Dichloroethene	100	NS		U	0.24		U	0.24		U	0.24		U	0.24		U	0.24
trans-1,3-Dichloropropene	NS	8.4		U	0.22		U	0.22		U	0.22		U	0.22		Ü	0.22
Trichloroethene	1	3.0		U	0.31		U	0.31	0.53	J	0.31		U	0.31		U	0.31
Trichlorofluoromethane	2,000	NS		U	0.32		U	0.32		U	0.32		U	0.32		U	0.32
Vinyl chloride	1	1.0		U	0.17		U	0.17		U	0.17		U	0.17		Ü	0.17
Xylenes, Total	1,000	7,800		U	0.65		U	0.65		U	0.65		U	0.65		Ü	0.65
VOC TIC Conc. (# TICs)	100/500 total	NS	ND			ND			ND			ND			ND		
Volatile Organics by 8260 (µg/L)																	
1,2-Dibromo-3-Chloropropane	0.02	NS		U	0.01		U	0.01		U	0.01		U	0.01		U	0.01
Ethylene Dibromide	0.03	0.45		Ü	0.0079		Ü	0.0079		Ü	0.0079		Ü	0.0079		Ü	0.0079
# All 1 1 1 1				— .										,			

μg/L = All concentrations reported in micrograms per liter btoc = Below top of casing

TICs = Tentatively Identified Compounds
U = Sample concentration not detected above the MDL
NS = No standard available

Q = Qualifier

MDL = Method Detection Limit

NJ-GWIIA = 2020 NJ Groundwater Quality Class IIA Criteria

NJ-VIGWS = 2021 NJ Vapor Intrusion Groundwater Screening Levels

Exceeds 2020 NJ Groundwater Quality Criteria for Class IIA Aquifers (NJ-GWIIA)

Exceeds NJ-GWIIA and 2021 NJ Vapor Intrusion Groundwater Screening Levels (NJ-VIGWSL)

MDL exceeds a remediation standard

J = Concentration detected at a value below the RL and above the MDL for target compounds.

1.3* = Meets standard after rounding according to NJDEP Guidance for the Attainment of Remediation Standards

ND = Not Detected

TABLE 6B

SEPTEMBER 2024 - ANALYTICAL GROUNDWATER RESULTS - SEMIVOLATILES

"S. YAFFA AND SONS, INC."

616 CHESTNUT STREET ET AL., CITY OF CAMDEN, CAMDEN COUNTY, NJ 08103

BLOCK 331 / NJDEP CSRRP PI # 025881 Montrose Project # 11595-03

Sample ID: Lab ID:	NJDEP GWQS for	AGI	MW-1 0-311991	,	4	MW-2 60-311991	1	4	MW-3 60-311991	2		EB-240923 60-311991	
Date Sampled:	Class IIA	400	9/23/24	-)	41	9/23/24	-1	4	9/23/24	-2	4	9/23/24	-4
Groundwater Depth (feet btoc):	Aquifers		13.95			14.30			14.24			0,20,21	
. ,	(µg/L)	Conc	Q	MDL	Conc	Q	MDL	Conc	Q	MDL	Conc	Q	MDL
Semi-Volatile Organics by 8270 SIMs (µg/L				0.47			0.47			0.47			0.47
1,4-Dioxane Benzo[a]anthracene	0.4 0.10		U	0.17 0.016		U	0.17 0.016		U	0.17 0.016		U	0.17 0.016
Benzo[a]pyrene	0.10		Ü	0.022		Ü	0.022		Ü	0.022		Ü	0.010
Benzo[b]fluoranthene	0.20		U	0.024		U	0.024		U	0.024		U	0.024
Benzo[g,h,i]perylene	100		U	0.035		U	0.035		U	0.035		U	0.035
Benzo[k]fluoranthene	0.50		U	0.028		U	0.028		U	0.028		U	0.028
Bis(2-chloroethyl)ether Dibenz(a.h)anthracene	7		U	0.026		U	0.026		U	0.026		U	0.026
	0.30			0.02			0.02			0.02			0.02
Hexachlorobenzene	0.020		U	0.011		U	0.011		U	0.011		U	0.011
Indeno[1,2,3-cd]pyrene			U						U	0.036		U	
N-Nitrosodimethylamine	0.80	-	U	0.12		U	0.12			0.12			0.12
Pentachlorophenol Semi-Volatile Organics by 8270 (µg/L)	0.30		U	0.18		U	0.18		U	0.18		U	0.18
	400	1		4.0	1		4.0			4.0			4.0
1,1'-Biphenyl	400	-	U	1.2		U	1.2		U	1.2		U	1.2
1,2,4,5-Tetrachlorobenzene	NS					U	1.2			1.2			
1-Methylnaphthalene	5	 	U	1.1 0.63		U	1.1 0.63		U	1.1 0.63		U	1.1 0.63
2,2'-oxybis[1-chloropropane]	300	 	U						U				
2,3,4,6-Tetrachlorophenol	200 700	 	U	0.75	-	U	0.75 0.88		U	0.75 0.88	1	U	0.75 0.88
2,4,5-Trichlorophenol	700 20	 	U	0.88		U	0.88		U			U	0.88
2,4,6-Trichlorophenol	20	├ ──┼	U			U		 	U	0.86	1	U	
2,4-Dichlorophenol	100	 	U	1.1 0.62		U	1.1 0.62		U	1.1 0.62		U	1.1 0.62
2,4-Dimethylphenol		-											
2,4-Dinitrophenol	40	 	U	2.6		U	2.6		U	2.6		U	2.6
2,4-Dinitrotoluene 2,6-Dinitrotoluene	NS NS		U	0.83		U	0.83		U	0.83		U	0.83
		-	U			U			U			U	
2-Chloronaphthalene	600 40	-	U *-	1.2		U *-	1.2 0.38		U *-	1.2 0.38		U *-	1.2 0.38
2-Chlorophenol	30	-	U *-	0.38		U *-			U *-	0.53		U *-	0.53
2-Methylnaphthalene	50	-	U *-	0.53		U *-	0.53 0.67		U *-	0.53		U *-	0.53
2-Methylphenol	NS NS	-				_						U -	
2-Nitroaniline		-	U	0.47		U	0.47		U	0.47		U	0.47
2-Nitrophenol	NS		U	0.75			0.75			0.75			0.75
3 & 4 Methylphenol	NS 30		U U*-	0.64		U U*-	0.64		U U*-	0.64		U U *-	0.64 1.4
3,3'-Dichlorobenzidine	30			1.4			1.4			1.4			
3-Nitroaniline	NS 0.7		U	1.9		U	1.9		U	1.9		U	1.9
4,6-Dinitro-2-methylphenol	0.7		U	3		U	3		U	3		U	3
4-Bromophenyl phenyl ether	NS 100		U	0.75 0.58		U	0.75			0.75			0.75 0.58
4-Chloro-3-methylphenol 4-Chloroaniline	100 30		U	1.9		U	0.58 1.9		U	0.58 1.9		U	1.9
4-Chlorophenyl phenyl ether	NS		Ü	1.3		Ü	1.3		Ü	1.3		Ü	1.3
4-Nitroaniline	NS		U	1.2		Ü	1.2		Ü	1.2		Ü	1.2
4-Nitrophenol	NS		U	4		U	4		U	4		U	4
Acenaphthene	400		U	1.1		U	1.1		U	1.1		U	1.1
Acenaphthylene	100		U	0.82		U	0.82		U	0.82		U	0.82
Acetophenone	700		U	2.3		U	2.3		U	2.3		U	2.3
Anthracene	2,000		U	1.3		U	1.3		U	1.3		U	1.3
Atrazine	3		U	1.3		U	1.3		U	1.3		U	1.3
Benzaldehyde	NS		U	2.1		U	2.1		U	2.1		U	2.1
Bis(2-chloroethoxy)methane	NS		U	0.59		U	0.59		U	0.59		U	0.59
Bis(2-ethylhexyl) phthalate	3		U	8.0		U	0.8		U	0.8		U	0.8
Butyl benzyl phthalate	100		U	0.85		U	0.85		U	0.85		U	0.85
Caprolactam	4,000		U	2.2		U	2.2		U	2.2		U	2.2
Carbazole Chrysene	NS 5	 	U	0.68		U	0.68		U	0.68		U	0.68
Dibenzofuran	NS	 	U	1.1		U	1.1		U	1.1		U	1.1
Diethyl phthalate	6,000		Ü	0.98		Ü	0.98		Ü	0.98		Ü	0.98
Dimethyl phthalate	100		U	0.77		Ü	0.77		Ü	0.77		Ü	0.77
Di-n-butyl phthalate	700		U	0.84		U	0.84		U	0.84		U	0.84
Di-n-octyl phthalate	100		U	0.75		U	0.75		U	0.75		U	0.75
Fluoranthene	300		U	0.84		U	0.84		U	0.84		U	0.84
Fluorene	300		U	0.91		U	0.91		U	0.91		U	0.91
Hexachlorobutadiene	1		U	0.78		U	0.78		U	0.78		U	0.78
Hexachlorocyclopentadiene	40		U	3.6		U	3.6		U	3.6		U	3.6
Hexachloroethane	7		U	8.0		U	8.0		U	8.0		U	0.8
Isophorone	40		U	0.8		U	0.8		U	8.0		U	0.8
Naphthalene	300		U	0.54		U	0.54		U	0.54		U	0.54
Nitrobenzene	6		U	0.57		U	0.57		U	0.57		U	0.57
N-Nitrosodi-n-propylamine	10 10		U	0.43		U	0.43		U	0.43		U	0.43
N-Nitrosodiphenylamine Phenanthrene	100	 	U	0.89		U	1.3		U	0.89	1	U	1.3
Phenanthrene Phenol	2,000	 	U	1.3 0.29		U	0.29		U	0.29	1	U	0.29
Pyrene	2,000	1	U	1.6		U	1.6		U	1.6	-	U	1.6
SVOC TIC Conc. (# TICs)	NS NS	ND	U	1.0	ND	U	1.0	ND	U	1.0	ND	U	1.0
μg/L = All concentrations reported in micrograms p		NJ-GWIIA =	2020 NT C	aroundwater		ss IIA Critori	ia ia	טאו			טאו		

bloc = Below top of casing

TICs = Tentatively Identified Compounds

U = Sample concentration not detected above the MDL

NS = No standard available; Q = Qualifier

Exceeds 2020 NJ Groundwater Quality Criteria for Class IIA Aquifers (NJ-GWIIA)

MDL exceeds a remediation standard

*: LCS and/or LCSD is outside acceptance limits, LOW biased.

*: Compound does not exceed a standard once rounding is applied to result

ND = Not Detected; MDL = Method Detection Limit

TABLE 6C

SEPTEMBER 2024 - ANALYTICAL GROUNDWATER RESULTS - INORGANICS "S. YAFFA AND SONS, INC."

616 CHESTNUT STREET ET AL., CITY OF CAMDEN, CAMDEN COUNTY, NJ 08103 BLOCK 331 / NJDEP CSRRP PI # 025881

Montrose Project # 11595-03

Sample ID:			MW-1			MW-2			MW-3		E	B-24092	3
Lab ID:	NJDEP GWQS	46	0-31199 [,]	1-3	46	0-31199	1-1	46	0-31199	1-2	46	0-31199	1-4
Date Sampled:	for Class IIA		9/23/24			9/23/24			9/23/24			9/23/24	
Groundwater Depth (feet btoc):	Aquifers (µg/L)		13.95			14.30			14.24			NA	
, ,		Conc	Q	MDL	Conc	Q	MDL	Conc	Q	MDL	Conc	Q	MDL
Metals by 6020B (µg/L)													
Aluminum	200	102		19.5	3,100		19.5	1,360		19.5		U	19.5
Antimony	6		U	0.76	1.5	J	0.76		U	0.76		U	0.76
Arsenic	3	2		0.89	10.8		0.89	1.3	J	0.89		U	0.89
Barium	6,000	164		0.91	124		0.91	95.9		0.91		U	0.91
Beryllium	1		U	0.13	0.25	J	0.13		U	0.13		U	0.13
Cadmium	4	0.75	J	0.39	0.53	J	0.39		U	0.39		U	0.39
Calcium	NS	105,000		54	195,000		54	84,200		53.6		U	53.6
Chromium	70		U	2.5	12.4		2.5	5.5		2.5		U	2.5
Cobalt	100	4.9		0.71	15.9		0.71	7.1		0.71		U	0.71
Copper	1,300		U	2.5	14.5		2.5	9.5		2.5		U	2.5
Iron	300	116	J	58.2	4,010		58	1,210		58.2		U	58.2
Lead	5		U	0.84	30.1		0.84	2.2		0.84		U	0.84
Magnesium	NS	53400		46.9	181000		46.9	34000		46.9		U	46.9
Manganese	50	125		1.5	131		1.5	1,150		1.5		U	1.5
Mercury	2		U	0.091		U	0.091		U	0.091		U	0.091
Nickel	100	9.2		0.91	36.2		0.91	5.6		0.91		U	0.91
Potassium	NS	13,800		112	58,200		112	27,200		112		U	112
Selenium	40	3.6		0.59	1	J	0.59	2.7		0.59		U	0.59
Silver	40		U	0.29		U	0.29		U	0.29		U	0.29
Sodium	50,000	87,900		219	112,000		219	26,900		219		U	219
Thallium	2		U	0.21		U	0.21		U	0.21		U	0.21
Vanadium	NS	13.2		0.68	15.9		0.68	4.6		0.68		U	0.68
Zinc	2,000	9.4	J	6.5	41.3		6.5	11.3	J	6.5		U	6.5
μg/L = All concentrations reported in micrograms btoc = Below top of casing			NJ-GWIIA #		J Groundv 2020 NJ G				Class IIA	Aquifers (NJ-GWIIA)		

ug/L = All concentrations reported in micrograms per liter btoc = Below top of casing
U = Sample concentration not detected above the MDL

NS = No standard available

Q = Qualifier
MDL = Method Detection Limit

J = Concentration detected at a value below the RL and above the MDL

ND = Not Detected NS = No standard available

Table 7 – SURROUNDING 200 FOOT RADIUS LAND USE EVALUATION "S. YAFFA AND SONS, INC. 616 CHESTNUT STREET ET AL., CITY OF CAMDEN, CAMDEN COUNTY, NJ 08103

16 CHESTNUT STREET ET AL., CITY OF CAMDEN, CAMDEN COUNTY BLOCK 331 / NJDEP CSRRP PT# 025881 Montrose Project No. 11595-03

Map ID	BLOCK	LOT	Property Address	Owner Address	Land Use
2	388	82	709 CHESTNUT ST	15 NO 35TH STREET CAMDEN, NJ 08105	Residential
4	324	11	620 MT VERNON ST	PO BOX 95120 CAMDEN, NJ 081015120	Vacant Land
5	323	43	1027 SO 6TH ST	1027 SO 6TH STREET CAMDEN, NJ 08103	Vacant land
6	329	148	1137 BARING ST	766 MOUNT VERNON STREET CAMDEN, NJ 08103	Residential
7	330	185	1136 BARING ST	1136 BARING STREET CAMDEN, NJ 081032202	Residential
8	402	73	701 KAIGHN AVE	406 CHAMBERS AVENUE CAMDEN, NJ 08103	Commercial
9	402	76	707 KAIGHN AVE	707 KAIGHN AVENUE CAMDEN, NJ 08103	Commercial
10	324	37	613 CHESTNUT ST	306 MUNN LANE CHERRY HILL, NJ 08034	Residential
11	324	12	622 MT VERNON ST	306 MUNN LANE CHERRY HILL, NJ 08034	Vacant Land
	324	14	626 MT VERNON ST	PO BOX 95120 CAMDEN, NJ 081015120	Vacant Land
	324	22	643 CHESTNUT ST	PO BOX 8908 COLLINGSWOOD, NJ 08108	Commercial
	324	28	619-635 CHESTNUT ST	No Information	Vacant Land
	329	152	1129 BARING ST	1127 BARING STREET CAMDEN, NJ 081032201	Vacant land
	324	44	1026 SO 6TH ST	1727 HYBRID PLACE CLEMENTON, NJ 08021	Vacant Land
	324	42	603 CHESTNUT ST	603 CHESTNUT STREET CAMDEN, NJ 081032306	Vacant Land
	324	40	607 CHESTNUT ST	811 CHURCH ROAD, #105 CHERRY HILL, NJ 08002	Vacant Land
	324	39	609 CHESTNUT ST	520 MARKET ST, 13TH FL CAMDEN, NJ 08102	Public property
	324	38	611 CHESTNUT ST	611 CHESTNUT STREET CAMDEN, NJ 08104	Residential
	324	5	608 MT VERNON ST	608 MT VERNON STREET CAMDEN, NJ 081032312	Vacant Land
	324		610 MT VERNON ST	832 GERMANTOWN PIKE, #5 PLYMOUTH MEETING, PA 19462	Residential
	324	3 4	604 MT VERNON ST	604 MT VERNON STREET CAMDEN, NJ 081032312	Vacant Land
	388	83	606 MT VERNON ST 707 CHESTNUT ST	PO BOX 95120 CAMDEN, NJ 081015120 B-3 CHESTNUT COURT CAMDEN, NJ 08103	Public property Residential
	323	17	1023 SO 6TH ST	900 HADDON AVENUE, #201 COLLINGSWOOD, NJ 08108	Residential
	329	149	1135 BARING ST	1135 BARING STREET CAMDEN, NJ 081032201	Vacant land
	330	184	1134 BARING ST	1134 BARING STREET CAMDEN, NJ 08103-2202	Vacant land
	324	34	619-635 CHESTNUT ST	811 CHURCH ROAD, #105 CHERRY HILL, NJ 08002	Vacant Land
	329	146	1141 BARING ST	1141 BARING STREET CAMDEN, NJ 08103	Residential
	. 324	10	618 MT VERNON ST	811 CHURCH ROAD, #105 CHERRY HILL, NJ 08002	Vacant Land
	324	23	641 CHESTNUT ST	1622 MT EPHRAIM AVENUE CAMDEN, NJ 08104	Vacant Land
	329	145	1143 BARING ST	1143 BARING STREET CAMDEN, NJ 081039481	Vacant land
	329	150	1133 BARING ST	6158 WAYNE AVENUE PNNSAUKEN, NJ 08110	Residential
35	330	181	1128 BARING ST	22 EDEN HOLLOW LANE SICKLERVILLE, NJ 08080	Residential
36	323	18	1025 SO 6TH ST	2106 OLD YORK ROAD BORDENTOWN, NJ 085054213	Residential
37	332	109	617 KAIGHN AVE	PO BOX 95120 CAMDEN, NJ 081015120	Public property
38	332	121	620 SYCAMORE ST	333 LAFAYETTE AVE, 18J BROOKLYN, NY 11238	Vacant land
39	332	99	1142 SO 6TH ST	424 KING DRIVE GLASSBORO, NJ 08025	Residential
40	330	183	1132 BARING ST	PO BOX 95120 CAMDEN, NJ 081015120	Public property
41	. 330	169	1104 BARING ST	10 JOLINE ROAD KENDALL, NJ 08824	Residential
42	329	158	1117 BARING ST	6115 FORREST AVENUE PENNSAUKEN, NJ 08110	Residential
43	330	175	1116 BARING ST	273-A WESTFIELD GARDENS CAMDEN, NJ 08105	Residential
	323	14	576 MT VERNON ST	3501 BLACK HORSE PK, #530 TURNERSVILLE, NJ 08012	Residential
	323	7	562 MT VERNON ST	PO BOX 245 PENNSAUKEN, NJ 08110	Residential
	323	16	580 MT VERNON ST	1319 LANSDOWN AVENUE CAMDEN, NJ 08104	Vacant land
	332	122	622 SYCAMORE ST	622 SYCAMORE STREET CAMDEN, NJ 081032313	Vacant land
	324	31	619-635 CHESTNUT ST	No Information	Vacant Land
	324	45	1024 SO 6TH ST	1031 KENWOOD AVENUE CAMDEN, NJ 08103	Residential
	388	81	711 CHESTNUT ST	22 EDENHOLLOW LANE SICKLERVILLE, NJ 08081	Residential
	329	164	1105 BARING ST	832 GERMANTOWN PIKE, #5 PLYMOUTH MEETING, PA, 19462	Residential
	329	141 142	1151 BARING ST	832 GERMANTOWN PIKE, #5 PLYMOUTH MEETING, PA 19462	Residential
	330	191	1149 BARING ST 1148 BARING ST	206 CHATHAM ROAD LINDENWOLD, NJ 08021 832 GERMANTOWN PIKE, #5 PLYMOUTH MEETING, PA 19462	Vacant land Residential
	401	38	SS SYCAMORE 42 E 7TH ST	PO BOX 1575 LAKEWOOD, NJ 08701	Residential (Apartment)
	329	156	1121 BARING ST	8616 108TH STREET RICHMOND HILL, NY 11418	Residential
	388	84	705 CHESTNUT ST	705 CHESTNUT STREET CAMDEN, NJ 081032401	Vacant land
	329	103	1100 MARION ST	PO BOX 95120 CAMDEN, NJ 081015120	Public property
	324	33	619-635 CHESTNUT ST	No Information	Vacant Land
	323	15	578 MT VERNON ST	742 TULIP STREET CAMDEN, NJ 08104	Residential
	. 330	177	1120 BARING ST	1501 LTL GLOUCESTER, #F37 BLACKWOOD, NJ 08012	Residential
	388	86	701-703 CHESTNUT ST	PO BOX 95120 CAMDEN, NJ 08105120	Public property
	329	157	1119 BARING ST	1119 BARING STREET CAMDEN, NJ 08103	Residential
	330	176	1118 BARING ST	1118 BARING STREET CAMDEN, NJ 081032202	Residential
	330	178	1122 BARING ST	1122 BARING STREET CAMDEN, NJ 08103	Residential

Table 7 – SURROUNDING 200 FOOT RADIUS LAND USE EVALUATION "S. YAFFA AND SONS, INC. CHESTNUT STREET ET AL. CITY OF CAMPEN, CAMPEN COUNTY, N. O.

616 CHESTNUT STREET ET AL., CITY OF CAMDEN, CAMDEN COUNTY, NJ 08103 BLOCK 331 / NJDEP CSRRP PI # 025881 Montrose Project No. 11595-03

Map ID	BLOCK	LOT	Property Address	Owner Address	Land Use
•	330	190	1146 BARING ST	1146 BARING STREET CAMDEN, NJ 081032202	Residential
	332	90	SE 6TH & SYCAMORE STS	424 KING DRIVE GLASSBORO, NJ 08025	Commercial
68	332	101	606 SYCAMORE ST	284 E PENN STREET PHILADELPHIA, PA 191441710	Vacant land
	332	110		,	unknown
	330	170	1106 BARING ST	559 RAMONA GONZALEZ ST CAMDEN, NJ 08103	Residential
72	330	172	1110 BARING ST	1110 BARING STREET CAMDEN, NJ 081032202	Vacant land
	329	155	1123 BARING ST	1123 BARING STREET CAMDEN, NJ 081032201	Residential
	401	37	SE 7TH & SYCAMORE ST	406 CHAMBERS AVENUE CAMDEN, NJ 08103	Vacant land
	324	32	619-635 CHESTNUT ST	No Information	Vacant Land
	332	117	612 SYCAMORE ST	200 HDDNFLD-BRLN RD, #102 GIBBSBORO, NJ 08026	Residential
	388	41	700 MT VERNON ST	201 BLACKWD-CLEMTN RD/209 PINE HILL, NJ 08021	Vacant land
	388	40	702 MT VERNON ST	PO BOX 600 TRENTON, NJ 086250600	Public property
-	329	140	1153 BARING ST	2931 CRAMER STREET CAMDEN, NJ 081052201	Vacant land
	330	193	1152 BARING ST	884 HADDON AVENUE CAMDEN, NJ 081032727	Vacant land
	329	162	1109 BARING ST	2559 MILVID COURT RALEIGH, NC 276103554	Vacant land
	331	80	601-609 SYCAMORE ST	811 CHURCH ROAD, #105 CHERRY HILL, NJ 08002	Vacant Land
	329	160	1113 BARING ST	374 SO 30TH STREET CAMDEN, NJ 08105	Residential
	330	173	1112 BARING ST	1112 BARING STREET CAMDEN, NJ 081032202	Vacant land
	331	88	1110 SO 6TH ST	1110 SO 6TH STREET CAMDEN, NJ 08103	Vacant Land
	324	1	600 MT VERNON ST	832 GERMANTOWN PIKE, #5 PLYMOUTH MEETING, PA 19462	Residential
	324	24	639 CHESTNUT ST	639 CHESTNUT STREET CAMDEN, NJ 08103	Vacant Land
	332	123	624 SYCAMORE ST	129 N COUNTY LINE RD #124 JACKSON, NJ 08527	Residential
	330	188	1142 BARING ST	1142 BARING STREET CAMDEN, NJ 081032202	Residential
	330	186	1138 BARING ST	1138 BARING STREET CAMDEN, NJ 081032202	Residential
	323	13	574 MT VERNON ST	512 LINE STREET CAMDEN, NJ 08103	Residential
	329	165	1103 BARING ST	1103 BARING STREET CAMDEN, NJ 08103	Residential
	324	2	602 MT VERNON ST	26 NEVADA AVENUE CHERRY HILL, NJ 080023006	Vacant Land
	329	163	1107 BARING ST	1107 BARING STREET CAMDEN, NJ 081032201	Residential
	330	179	1124 BARING ST	135 BERGEN COURT COPIAGUE, NY 11726	Residential
	329	166	1101 BARING ST	1101 BARING STREET CAMDEN, NJ 081032201	Residential
	330	167	1100 BARING ST	1531 NEWPORT STREET CAMDEN, NJ 08104	Commercial
	330	168	1100 BARING ST	1102 BARING STREET CAMDEN, NJ 08103	Residential
	323	10	568 MT VERNON ST	568 MT VERNON STREET CAMDEN, NJ 081032233	Vacant land
100		11	570 MT VERNON ST	570 MOUNT VERNON STREET CAMDEN, NJ 08103	Residential
101		9	566 MT VERNON ST	335 SUMMIT STREET CAMDEN, NJ 08102	Vacant land
101		8	564 MT VERNON ST	564 MT VERNON STREET CAMDEN, NJ 081032233	Vacant land
102		159	1115 BARING ST	1115 BARING STREET CAMDEN, NJ 081032201	Vacant land
103		171	1108 BARING ST	1108 BARING STREET CAMDEN, NJ 08103	Residential
104		89	1108 SO 6TH ST	520 MARKET ST, 13TH FL CAMDEN, NJ 08102	Vacant Land
105		50	SS CHESTNUT 60 E 6TH ST	811 CHURCH ROAD, #105 CHERRY HILL, NJ 08002	Vacant Land
100		53	620 CHESTNUT ST	324 BERKLEY STREET CAMDEN, NJ 08103	Residential
107		174	1114 BARING ST	216 HADDON AVE, #503 HADDON TOWNSHIP, NJ 08108	Residential
108		12	572 MT VERNON ST	572 MT VERNON STREET CAMDEN, NJ 081032233	Residential
110		19	372 IVIT VERNOW 31	572 IVIT VERNOUN STREET CANVIDEN, NJ UOTUSZZSS	
111		161	1111 BARING ST	832 GERMANTOWN PIKE, #5 PLYMOUTH MEETNG, PA 19462	Residential
111		143	1147 BARING ST	457 NO 35TH STREET CAMDEN, NJ 08105	Residential
112		153	621 KAIGHN AVE	8 LEXINGTON WAY SICKLERVILLE, NJ 08105	Commercial
113		21	555 CHESTNUT ST	555 CHESTNUT STREET CAMDEN, NJ 08103	Commercial
114		147	1139 BARING ST	1139 BARING STREET CAMDEN, NJ 08103	Residential
116		153	1127 BARING ST	1127 BARING STREET CAMDEN, NJ 08103 1127 BARING STREET CAMDEN, NJ 081031234	Residential
117		180	1126 BARING ST	321 JOHN F KENNEDY BLVD LAWNSIDE, NJ 08045	Residential
117		116	610 SYCAMORE ST	832 GERMANTOWN PIKE, #5 PLYMOUTH MEETING, PA 19462	Residential
118		182	1130 BARING ST	1147 BARING STREET CAMDEN, NJ 081032201	Residential
120		187			
120		27	1140 BARING ST 619-635 CHESTNUT ST	1140 BARING STREET CAMDEN, NJ 081032202	Residential
121		26		No Information	Vacant Land
122			619-635 CHESTNUT ST	No Information	Vacant land
		151	1131 BARING ST	1127 BARING STREET CAMDEN, NJ 081032201	Vacant land
124		1	700 CHESTNUT ST	PO BOX 8908 COLLINGSWOOD, NJ 08108	Commercial
125		24	553 CHESTNUT ST	553 CHESTNUT STREET CAMDEN, NJ 08103	Residential
	33 2	111	525 545 44 40 05 57	COS SVOAMADDE STREET SAMAREN AU OCACOOCA	unknown
126	222	121			
126 127 128		124 125	626 SYCAMORE ST 628 SYCAMORE ST	626 SYCAMORE STREET CAMDEN, NJ 081032313 22 EDEN HOLLOW LANE SICKLERVILLE, NJ 08081	Residential Residential

Table 7 – SURROUNDING 200 FOOT RADIUS LAND USE EVALUATION "S. YAFFA AND SONS, INC. 616 CHESTNUT STREET ET AL., CITY OF CAMDEN, CAMDEN COUNTY, NJ 08103 BLOCK 331 / NJDEP CSRRP PI # 025881 Montrose Project No. 11595-03

Map ID	BLOCK	LOT	Property Address	Owner Address	Land Use
130	331	120	1106 SO 6TH ST	1106 SO 6TH STREET CAMDEN, NJ 081032305	Vacant land
131	323	44	1029 SO 6TH ST	217 RUTLEDGE STREET BROOKLYN, NY 11211	Vacant land
132	329	138	1157 BARING ST	PO BOX 95120 CAMDEN, NJ 081015120	Public property
133	330	189	1144 BARING ST	400 HETTY HILL STREET GAFFNEY, SC 293404232	Residential
134	332	118	613-615 KAIGHN AVE	276 WALNUT AVENUE BELLMAWR, NJ 08031	Commercial
135	331	54	624-644 CHESTNUT ST	PO BOX 95120 CAMDEN, NJ 081015120	Vacant land
136	329	154	1125 BARING ST	832 GERMANTOWN PIKE, #5 PLYMOUTH MEETING, PA 19462	Residential
137	330	192	1150 BARING ST	PO BOX 95120 CAMDEN, NJ 081015120	Public property
138	324	29	619-635 CHESTNUT ST	No Information	Vacant Land
139	324	25	637 CHESTNUT ST	611 CHESTNUT STREET CAMDEN, NJ 08104	Residential
140	323	6	560 MT VERNON ST	1111 MARION STREET CAMDEN, NJ 08104	Vacant land
141	323	20	565 CHESTNUT ST	565 CHESTNUT STREET CAMDEN, NJ 081032231	Vacant land
142	331	113	602 1/2 CHESTNUT ST	PO BOX 95120 CAMDEN, NJ 081015120	Vacant land
143	331	87	1112 SO 6TH ST	PO BOX 95120 CAMDEN, NJ 081015120	Vacant land
144	332	130	638 SYCAMORE ST	638 SYCAMORE STREET CAMDEN, NJ 081032313	Vacant land
145	324	43	601 CHESTNUT ST	601 CHESTNUT STREET CAMDEN, NJ 081032778	Vacant Land
146	323	19	567-569 CHESTNUT ST	PO BOX 95120 CAMDEN, NJ 081015120	Vacant land
147	330	194	1154 BARING ST	832 GERMANTOWN PIKE, #5 PLYMOUTH MEETING, PA 19462	Residential
148	329	144	1145 BARING ST	1145 BARING STREET CAMDEN, NJ 08103	Vacant land
149	331	46	602 CHESTNUT ST	811 CHURCH ROAD, #105 CHERRY HILL, NJ 08002	Vacant land
150	332	115	608 SYCAMORE ST	608 SYCAMORE STREET CAMDEN, NJ 08103	Residential
151	324	30	619-635 CHESTNUT ST	No Information	Vacant Land
152	390	2	NE SYCAMORE & 7TH ST	PO BOX 1575 LAKEWOOD, NJ 08701	Residential (Apartment)
153	332	127	632 SYCAMORE ST	705 CHESTNUT STREET CAMDEN, NJ 081032401	Vacant land
154	332	128	634 SYCAMORE ST	634 SYCAMORE STREET CAMDEN, NJ 08103	Vacant land
155	332	129	636 SYCAMORE ST	PO BOX 95120 CAMDEN, NJ 081015120	Public property
				406 CHAMBERS AVENUE	
156	402	74	703 KAIGHN AVE	CAMDEN, NJ 08103	Commercial
157	402	75	705 KAIGHN AVE	707 KAIGHN AVENUE CAMDEN, NJ 08103	Commercial
158	402	77	709 KAIGHN AVE	707 KAIGHN AVENUE CAMDEN, NJ 08103	Commercial

Figures

Figure 1 – Site Location Map

Figure 2 – Aerial Photograph

Figure 3 – Aera of Concern Map

Figure 4 – Soil Sample Locations - May, 2023, May 2024, and September 2024

Figure 5 – Soil Sample Summary Results from May 5, 2023

Figure 6 - Soil Post-Excavation Summary Results from May 13, 2024

Figure 7A – Soil Analytical Exceedance Map – September 2024

Figure 7B – PFAS Soil Analytical Exceedance Map – September 2024

Figure 8 - Soil Cross Section Map

Figure 9 – Groundwater Analytical Results and Contour Map – September 2024

Figure 10 – Land Use Within 200 Feet of the Site

AERIAL PHOTOGRAPH

MONTROSE ENVIRONMENTAL SOLUTIONS, INC.

500 HORIZON DRIVE SUITE, 540 ROBBINSVILLE, NEW JERSEY 08691 T: 609.890.7277 montrose—env.com

	Scale:	1" = 50'	2
	Drawn By:	MN	٠,
7	Checked By:	ES	Ш
-	Project Mgr.:		2
L	Originated By	мсв	
		11595-03	(")
	Drawing Date	06/11/2023	ı∺
	Sheet No.:	OF	ш

---- SITE BOUNDARY

+++++++ FORMER RAILROAD SPUR

AREA OF CONCERN

FORMER DWELLING LOCATIONS

+₊+₊+₊+ FORMER JUNKYARD

FORMER BUILDING

FORMER OFFICE

1. JUNE 2024 AERIAL IMAGERY PROVIDED BY TPI ENVIRONMENTAL

2. * AC	OC NOT SHOWN (REFERS TO ENTIRE SITE).
AOC ID	Description
AOC-1	Former 1,000-gallon No. 2 Heating-Oil AST, 616 Chestnut Street (Lot 50) and Former 275-Gallon Heating-Oil AST at 604 Chestnut Street (Lot 46)
AOC-2	Former Registered 500- or 550-Gallon Gasoline/Diesel-Fuel UST, Removed November 18, 2002
AOC-3	Loading/Unloading Areas for Trash and Demolition debris*
AOC-4	Storage Pads, Including Drum and/or Waste Storage
AOC-5	Stormwater Collection System
AOC-6	Waste Piles, as defined by N.J.A.C. 7:26 • AOC-6a: Pile B – Soil and Mixed / Unprocessed Materials • AOC-6b: Pile C – Unprocessed Concrete, Brick, Block • AOC-6c: Pile D – Mixture of Screened Soil and Crushed Demolition debris • AOC-6d: Solid Waste Beneath Pile B
AOC-7	Historical Fill*
AOC-8	Three Pole-Mounted Electrical Transformers
AOC-9	Spill Incident # 96-04-19-0840-37: Spills from trucks cranes, and containers
AOC-10	Spill Incident # 23-03-27-1509-15: Stained soil underneath screening equipment
AOC-11	Former Railroad Spur
AOC-12	Former Residential Dwellings
AOC-13	Former On-Site Operations • AOC-13a: Steam Fitting Shop • AOC-13b: Greenhouse • AOC-13c: Junk Storage Areas • AOC-13d: Automotive Repair • AOC-13e: Yaffa Paper Stock Warehouse • AOC-13f: Yaffa Scrap Metal Operations • AOC-13g: Weyhill Soli/Debris Stockpiling Operations*
AOC-14	Off-site Coal & Wood Yard - 621 Kaighn Ave
AOC-15	Off-site Historical Cleaners - 1136 Baring Street
	0 25 50 100

1 INCH = 50 FT

S. YAFFA & SONS, INC.
616 CHESTNUT STREET ET AL,
CITY OF CAMDEN, CAMDEN COUNTY NJ 08103, BLOCK 331,
NJDEP PI # 025881, ACTIVITY # LSR160001

AREA OF CONCERN MAP

Project No.: 11595-03 Drawing Date: 08/14/2024 500 HORIZON DRIVE SUITE, 540 ROBBINSVILLE, NEW JERSEY 08691 T: 609.890.7277 montrose-env.com

FIGURE

SITE BOUNDARY

SOIL SAMPLE LOCATIONS (MAY 5, 2023)

1. JUNE 2024 AERIAL IMAGERY PROVIDED BY TPI ENVIRONMENTAL

Exceeds 2021 NJ SRS for the Migration to Groundwater Pathway (SRSMGW)

Exceeds 2021 NJ Residential Soil Remediation Standard (RSRS)

MDL = Method Detection Limit

mg/kg = All results reported in milligram per kilogram

ft bgs = feet below ground surface

NA = Not Analyzed

NS = No standard

Q = Qualifier

Total EPH = Fully Fractionated EPH Results

Total EPH (C9-C40) = Unfractionated EPH Results (Carbon 9 through Carbon 40)

Analytical Parameters	2021 NJ MGWSRS (mg/kg)	2021 NJ Residential SRS (mg/kg)	2021 NJ Non- Residential SRS (mg/kg)	Free Product Limit (mg/kg)
Total EPH	NS	5,300	75,000	8,000
Mercury	0.1	23	390	NS

S. YAFFA & SONS, INC.

616 CHESTNUT STREET ET AL, CITY OF CAMDEN, CAMDEN COUNTY NJ 08103, BLOCK 331, NJDEP PI # 025881, ACTIVITY # LSR160001

SOIL SAMPLE SUMMARY RESULTS MAY 5, 2023

500 HORIZON DRIVE SUITE, 540 ROBBINSVILLE, NEW JERSEY 08691 T: 609.890.7277 montrose-env.com

2 FIGURE Project No.: 11595-03 Drawing Date: 10/14/2024

FIGURE

SITE BOUNDARY

TEST PIT/SOIL SAMPLE LOCATION (SEPTEMBER 12, 2024)

SOIL SAMPLE LOCATION (SEPTEMBER 5, 2024)

JUNE 2024 AERIAL IMAGERY PROVIDED BY TPI ENVIRONMENTAL

2. NE = NO EXCEEDANCE REPORTED

Exceeds 2021 NJ SRS for the Migration to Groundwater Pathway (SRSMGW)

Exceeds 2021 NJ Residential Soil Remediation Standard (RSRS) Exceeds 2021 NJ Non-Residential Soil Remediation Standard (NRSRS)

- MDL exceeds a remediation standard
- * = NRSRS that exceeds SRSMGW

= NJAC 7:26D was amended on May 6 ,2024. The lead ingestiondermal exposure pathway was updated from 400 mg/kg to 200 mg/kg.

MDL = Method Detection Limit

mg/kg = All results reported in milligram per kilogram

Sample depth = Feet below ground surface

NA = Not analyzed

ND (#) = Not detected (Method Detection Limit reported)

- NS = No Standard
- J = Concentration detected at a value below the RL and above the MDL

Analytical Parameters	2021 NJ MGWSRS (mg/kg)	2021 NJ Residential SRS (mg/kg)	2021 NJ Non- Residential SRS (mg/kg)
EPH	NS	5,300	75,000
Benzo[a]anthracene	0.71	5.1	23
Benzo[a]pyrene	NS	0.51	2.3
Benzo[b]fluoranthene	NS	5,1	23
Dibenz(a,h)anthracene	NS	0.51	2.3
Indeno[1,2,3-cd]pyrene	NS	5.1	23
Naphthalene	19	5.7	27
2-Methylnaphthalene	3.1	240	3,300
Antimony	5.4	31	520
Arsenic	19	19	19
Cadmium	1.9	71	1,100
Cobalt	90	23	390
Copper	910	3,100	52,000
Total Chromium	NS	NS	NS
Lead**	90	200	800
Nickel	48	1,600	26,000
Silver	0.5	390	6,500
Zinc	930	23,000	390,000
Mercury	0.1	23	390
Total PCBs	1.6	0.25	1.1

S. YAFFA & SONS, INC.

616 CHESTNUT STREET ET AL, CITY OF CAMDEN, CAMDEN COUNTY NJ 08103, BLOCK 331, NJDEP PI # 025881, ACTIVITY # LSR160001

SOIL ANALYTICAL EXCEEDANCE MAP -SEPTEMBER 2024

500 HORIZON DRIVE SUITE, 540 ROBBINSVILLE, NEW JERSEY 08691 T: 609.890.7277 montrose-env.com

Drawn By: MN Checked By: ES Originated By MCB FIGURE Project No.: 11595-03 Drawing Date: 10/25/2024 OF

Client: CRA Project: Yaffa

Date Started: 09/05/2024
Date Completed: 09/05/2024
Well Completion Date: -

Drilling Company: ECDI Driller: Joe Barnak Drill Rig: Geoprobe 7822D

Drill Rig: Geoprobe 7822DT
Drilling Method: Direct Push
Boring Diameter: 2 in
Total Depth: 15'

Coordinates: 39.932379, -75.117293

Coords Sys: Lat/Lon Surface Elevation: 21.5'

Logged By: ES **Checked By:** CV

Project Address 616 Chestnut Street, Camden, NJ

					Sample	s
Water Levels Depth (ft)	Graphic Log	nscs	Visual Classification and Remarks	PID (PPM)	Sample Graphic	
		į,		3/4-Inch Stone 0.3	0	
				Fine to Medium Sand, with some Fill (brick), Little Gravel, Brown, loose,	1	
	1 -			dry, no odor, no staining 1.0	0	
				Fine to Medium Sand with Fill (cinders, brick, and concrete), Dark Brown, loose, dry, no odor, no staining		
	2 -			Fill (cinders and Concrete), Black, loose, dry, no odor, no staining	0	
				Fill (circles and concrete), black, loose, dry, no odor, no staining		
	3 -			3.0	0	
	-			Fine to Medium Sand, medium dense, Reddish Brown, dry, no odor, no staining		
	4 -				0	
	7					
	_			5.0		
	5 -			Fine to Medium Sand, medium dense, Light Brown, dry, no odor, no	0	
				staining. Samples : GP-1-2024-6-6.5 and GP-1-2024-8-8.5		
	6 -				0	
	7 -				0	
	8 -				0	<u> </u>
	9 -			9.0	0	
				Fine to Medium Sand, medium dense, Reddish Brown, moist, no odor, no staining		
$ \nabla $	10 -			10.0	J 0	
				Fine to Medium Sand, with Little to trace, Silt, Reddish Brown, saturated, no odor, no staining. Water table @ 10 Feet		
	11 -			11.0		
	11 %			Silty Sand, medium dense to soft, Reddish Brown, wet to saturated, no odor, no		
				staining.		
	12 -				0	
	13 -				0	
	14 -				0	
	15 -			End of Boring,		
				End of Boiling,		

NOTES:

Client: CRA Project: Yaffa

Date Started: 09/05/2024

Date Completed: 09/05/2024

Well Completion Date: -

Drilling Company: ECDI **Driller:** Joe Barnak **Drill Rig:** Geoprobe 7822D

Drill Rig: Geoprobe 7822DT
Drilling Method: Direct Push
Boring Diameter: 2 in
Total Depth: 15'

Coordinates: 39.932272, -75.116417

Coords Sys: Lat/Lon Surface Elevation: 20.4'

Logged By: ES **Checked By:** CV

Project Address 616 Chestnut Street, Camden, NJ

Depth (ft)	Graphic Log	nscs	Visual Classification and Remarks			hic
					PID (PPM)	Sample Graphic
			3/4-Inch Stone	0.3	0	
			Fine to Medium Sand And Fill Material (ash, brick, metal debris), Dark		-	
1 -			Brown, dry, medium dense, no odor, no staining. Sample: GP-2-2024-1-1.5		0	_
				20		
2 -			Fine to Medium Sand, with some Fill Material (ash, trace coal fragment),		0	
			Brown, dry, medium dense, no odor, no staining			
3 -			Fine to Medium Sand Reddish Brown dry to moist medium dense no odor	3.0	0	
			no staining			
4 -					0	
5 -					0	
6 -					0	
0 7					o	
				7.0		
7 -			Fine to Medium Sand, Gray mixed with some Brown @ 9-10 ft, dry,		0	
			medium dense, no odor, no staining. Sample : GP-2-2024-1-1.5			
8 -					0	
9 -					0	
10 -				10.0	0	
11				11.0	0	
	* * * * * * * * *		Silt, Gray, soft, wet, no odor, no staining		o	
	* * * * * * * * * *					
12 -	* * * * *				0	
	* * * * *					
13 -	* * * * *				0	
	* * * * *					
14 -	* * * * * *		Fine to Medium Sand with little to trace Silt Gray wet medium dense no	14.0	0	
15 -				15.0	0	
			Ena of Boring			
	2 3 4 5 6 7 8 10 11 12 13 14 15	2 - 3 - 4 - 5 - 6 - 7 - 8 - 10 - 11 - 12 - 12 - 13 - 13 - 13 - 14 - 14 - 14 - 14 - 14 - 15 - 16 - 17 - 17 - 18 - 18 - 19 - 10 - 11 - 1	2 - 3 - 4 - 5 - 6 - 7 - 8 - 10 - 11 - 11 - 12 - 13 - 13 - 13 - 14 - 15 - 15 -	Fine to Medium Sand, with some Fill Material (ash, trace coal fragment), Brown, dry, medium dense, no odor, no staining Fine to Medium Sand, Reddish Brown, dry to moist, medium dense, no odor, no staining Fine to Medium Sand, Reddish Brown, dry to moist, medium dense, no odor, no staining Fine to Medium Sand, Gray mixed with some Brown @ 9-10 ft, dry, medium dense, no odor, no staining. Sample: GP-2-2024-1-1.5 Fine to Medium Sand, with some to little Silt, Light Brown, wet, medium dense, no odor, no staining Silt, Gray, soft, wet, no odor, no staining Fine to Medium Sand, with little to trace Silt, Gray, wet, medium dense, no odor, no staining End of Boring	Fine to Medium Sand, with some Fill Material (ash, trace coal fragment), Brown, dry, medium dense, no odor, no staining 3.0 Fine to Medium Sand, Reddish Brown, dry to moist, medium dense, no odor, no staining 7.0 Fine to Medium Sand, Gray mixed with some Brown @ 9-10 ft, dry, medium dense, no odor, no staining. Sample: GP-2-2024-1-1.5 Fine to Medium Sand, with some to little Silt, Light Brown, wet, medium dense, no odor, no staining 10.0 Fine to Medium Sand, with some to little Silt, Light Brown, wet, medium dense, no odor, no staining 11.0 Silt, Gray, soft, wet, no odor, no staining 12.1 Fine to Medium Sand, with little to trace Silt, Gray, wet, medium dense, no odor, no staining 14.0 Fine to Medium Sand, with little to trace Silt, Gray, wet, medium dense, no odor, no staining 15.0 End of Boring	Fine to Medium Sand, with some Fill Material (ash, trace coal fragment), Brown, dry, medium dense, no odor, no staining 3.0 Fine to Medium Sand, Reddish Brown, dry to moist, medium dense, no odor, no staining 5 6 7- Fine to Medium Sand, Gray mixed with some Brown @ 9-10 ft, dry, medium dense, no odor, no staining. Sample: GP-2-2024-1-1.5 6 9 10 Fine to Medium Sand, with some to little Silt, Light Brown, wet, medium dense, no odor, no staining 11- Silt, Gray, soft, wet, no odor, no staining 11- Silt, Gray, soft, wet, no odor, no staining 11- Fine to Medium Sand, with little to trace Silt, Gray, wet, medium dense, no odor, no staining End of Boring

NOTES:

Client: CRA Project: Yaffa

Date Started: 09/05/2024 **Date Completed:** 09/05/2024 **Well Completion Date:** - **Drilling Company:** ECDI **Driller:** Joe Barnak **Drill Rig:** Geoprobe 7822D

Drill Rig: Geoprobe 7822DT
Drilling Method: Direct Push
Boring Diameter: 2 in
Total Depth: 18'

Coordinates: 39.931890, -75.117318

Coords Sys: Lat/Lon Surface Elevation: 20.8'

Logged By: ES **Checked By:** CV

						Sample	es
Water Levels Depth (ft)	Graphic Log	NSCS	Visual Classification and Remarks		PID (PPM)	Sample Graphic	
+				3/4-Inch Stone	0.3	Ü	
	1 -			Fine to Medium Sand dry loose And Fill (brick, Asphalt, Ash), Brown, no odor, no staining. Sample GP-3-2024-1-1.5	0.0	0	_
	2 -					0	
	3 -			Fine to Madium Cand dry madium dance Light Brown no oder no steining	3.0	0	
	4 -			Fine to Medium Sand, dry, medium dense, Light Brown, no odor, no staining		0	
	5 -				5.0	0	
	6 -			Fine to Medium Sand , dry, medium dense, Reddish Brown, no odor, no staining. Sample GP-3-2024-9.5-10		0	
	7 -					0	
	8 -					0	
_	9 -					0	-
<u> </u>	10 -			Fine to Medium Sand, saturated, medium dense, Reddish Brown, Water table	<u>10.0</u>	0	
	11 -			10 feet bgs, no odor, no staining	11.0	0	
				Fine to Medium Sand , saturated, medium dense, with Trace Silt , Brown, no odor, no staining		0	
	12 -					U	
	13 -				13.5	0	
	14 -			Silty Sand, saturated, medium dense, Reddish Brown, no odor, no staining Fine to Medium Sand, wet, medium dense, Brown, no odor, no staining	14.0	0	
	15 -					0	
	16 -			Silty Sand, wet, soft, Light Gray, no odor, no staining	16.0	0	
	17 -	7		City Gaila, Wet, 301t, Light Oray, no odol, no stalling		0	
				Fine to Medium Sand, moist, medium dense, Gray, no odor, no staining	17.5		
	18 -			End of Boring	18.0		
	19 -						

Client: CRA Project: Yaffa

Date Started: 09/05/2024 **Date Completed:** 09/05/2024 **Well Completion Date:** - Drilling Company: ECDI Driller: Joe Barnak Drill Rig: Geoprobe 7822D

Drill Rig: Geoprobe 7822DT
Drilling Method: Direct Push
Boring Diameter: 2 in
Total Depth: 15'

Coordinates: 39.932004, -75.116388

Coords Sys: Lat/Lon Surface Elevation: 18.5'

Logged By: ES **Checked By:** CV

Project Address 616 Chestnut Street, Camden, NJ

						Sample	s
Water Levels	Depth (ft)	Graphic Log	nscs	Visual Classification and Remarks		(Mdd) Old	Sample Graphic
				3/4-Stone	0.3	0	
	1-	X_{00}^{00}		Fine to Medium Sand And Fill Material (ash, wood, brick, plastic), Dark Brown, loose, dry, no odor, @ 1-1.5 ft bgs lens of ash with blue and yellow staining. Sample: GP-4-2024-1-1.5		0	_
	2 -	X_{00}^{00}			2.5	0	
	3 -			Fine to Medium Sand, Trace Glass (2.5-3.0 ft bgs), Brown, medium dense, dry, no odor, no staining		0	
	4 -					0	
	5 -			Fine to Medium Sand, Reddish Brown, medium dense, dry to moist, no odor, no staining	5.0	0	
	6 -			Tio staining		0	
	7 -					0	
	8 -					0	
	9 -			Fine to Medium Sand, Grayish Brown, medium dense, moist to wet no odor, no staining	9.0	0	
	10 -			4	10.0	<u>.</u>	
	11 -			Fine to Medium Sand, with some to little Silt, Gray, Saturated, Soft, no odor, no staining, water table @ 15.5 feet bgs, Sample: GP-4-2024-10-10.5	11.0	0	_
				Fine to Medium Sand , Grayish Brown, medium dense, saturated, no odor, no staining			
	12 -					0	
	13 -					0	
	14 -					0	
	15 -			End of Boring	15.0	0	

NOTES:

Client: CRA Project: Yaffa

Date Started: 09/12/2024 **Date Completed:** 09/12/2024 Well Completion Date: -

Drilling Company: Summit **Driller:** Tim Cornelius

Drill Rig: Drilling Method: Track-Mounted Mini...
Boring Diameter: Total Depth: 8'

Coordinates: 39.932395, -75.117297

Coords Sys: Lat/Lon **Surface Elevation: 22.0'**

Logged By: MP Checked By: ES

Project Address 616 Chestnut Street, Camden, NJ

П		Î				Samples	 S
Water Levels	Depth (ft)	Graphic Log	SOSO	Visual Classification and Remarks		. (Mdd) Old	Sample Graphic
	ĺ			3/4-Inch Stone	0.3		
				Fine to Medium Sand, Little Fill Material (brick, wood), Dark Brown, no odor, no staining.	0.5	0	
	1 -			Fine to Medium Sand, Reddish Brown, no odor, no staining, dry	1.0	0	
	2 -					0	
	3 -					0	
	4 -					0	
	5 -					0	
	6 -						
	7 -						
	8				8.0		

End of test pit, no ground water encountered

NOTES: TP-1 was performed to visually assess for signs of former 550-gallon UST

Client: CRA Project: Yaffa

Date Started: 09/12/2024 **Date Completed:** 09/12/2024

Well Completion Date: -

Drilling Company: Summit **Driller:** Tim Cornelius

Drill Rig: Drilling Method: Track-Mounted Mini...
Boring Diameter: Total Depth: 5'

Coordinates: 39.932270, -75.116955

Coords Sys: Lat/Lon **Surface Elevation:** N/A

Logged By: MP Checked By: ES

Project Address 616 Chestnut Street, Camden, NJ

Pro	ject Add	dress 6	16 Chestnu	t Street, Camden, NJ			
						Samples	5
Water Levels	Depth (ft)	Graphic Log	nscs	Visual Classification and Remarks		PID (PPM)	Sample Graphic
				3/4-Inch Stone			
				Fine to Medium Sand, Some Fill Material (brick, debris), Dark Brown, dry, no odor, no staining	0.3	0	
					1.0		
	1 -			Fine Sand, Brown, dry, no odor, no staining. Sample: TP-2-2024-1.0-1.5	1.0	0	
	2 -					0	
	3 -					0	
	4 -					0	
	5 -			End of test pit, no ground water encountered	5.0	0	

NOTES: Hit refusal from concrete. Moved TP-2 to the north-east

Client: CRA Project: Yaffa

Date Started: 09/12/2024 **Date Completed:** 09/12/2024 Well Completion Date: -

Drilling Company: Summit **Driller:** Tim Cornelius

Drill Rig: Drilling Method: Track-Mounted Mini...
Boring Diameter: Total Depth: 5'

Coordinates: 39.931899, -75.117274

Coords Sys: Lat/Lon **Surface Elevation:** N/A

Logged By: MP Checked By: ES

	Samples	3
	PID (PPM)	Sample Graphic
3		
	0.2	
	0.1	
5		1000
	0	
	0	
	0	
	0	
5.C	5.0	0

Client: CRA Project: Yaffa

Date Started: 09/12/2024 **Date Completed:** 09/12/2024 Well Completion Date: -

Drilling Company: Summit **Driller:** Tim Cornelius

Drill Rig: Drilling Method: Track-Mounted Mini...
Boring Diameter: Total Depth: 5'

Coordinates: 39.932417, -75.116533

Coords Sys: Lat/Lon **Surface Elevation:** N/A

Logged By: MP Checked By: ES

					Sample	S
vater Levels Depth (ft)	Graphic Log	SOSN	Visual Classification and Remarks		(Mdd) Old	Sample Graphic
			3/4-Inch Stone			
			Fine to Medium Sand with Fill Material (brick, wood, metal, debris), Brown,	0.3	6	
			no odor no staining		0.7	
				1.0		
1 -			Fine to Medium Sand, brown, dry, no odor, dark discoloration @ 1-1.5 feet bgs. Sample: TP-4-2024-1-1.5		0.2	
				1.5	2	
			Fine to Medium Sand, Light Brown, medium dense, moist, no odor, no staining			
2 -					0.2	
3 -					0	
4 -					0	
5 -				5.0	0	
J 8			End of test pit, no ground water encountered		j	
ES:						

Client: CRA Project: Yaffa

Date Started: 09/12/2024 **Date Completed:** 09/12/2024

Well Completion Date: -

Drilling Company: Summit **Driller:** Tim Cornelius

Drill Rig: Drilling Method: Track-Mounted Mini...
Boring Diameter: Total Depth: 5'

Coordinates: 39.931975, -75.116271

Coords Sys: Lat/Lon **Surface Elevation:** N/A

Logged By: MP Checked By: ES

						Samples	
water Levels	Depth (ft)	Graphic Log	SOSO	Visual Classification and Remarks		(Mdd) Old	Sample Graphic
1				3/4-Inch Stone			
			1	Fine to Medium Sand with Fill Material (brick, metal, debris), Dark Brown,	0.3		
				dry, no odor, no staining		0.2	
	1 -				1.0		
	'-			Medium Sand, Brown, no odor, no staining. Sample: TP-6-2024-1.0-1.5		0	
	2 -					0	
	3 -					0	
	4 -					0	
	5 -			End of test pit, no ground water encountered	5.0	0	

Client: CRA Project: Yaffa

Date Started: 09/12/2024 **Date Completed:** 09/12/2024

Well Completion Date: -

Drilling Company: Summit **Driller:** Tim Cornelius

Drill Rig: Drilling Method: Track-Mounted Mini...
Boring Diameter: Total Depth: 10'

Coordinates: 39.932091, -75.116588

Coords Sys: Lat/Lon **Surface Elevation:** N/A

Logged By: MP Checked By: ES

Project Address 616 Chestnut Street, Camden, NJ

						Samples	
Water Levels	Depth (ft)	Graphic Log	nscs	Visual Classification and Remarks		(Mdd) Old	Sample Graphic
1		,		3/4-Inch Stone	0.3		İ
	1 -			Fine to Medium Sand with Fill Material (brick, wood, asphalt, concrete, glass, plastic), Dark Brown, loose, dry, no odor, staining present. Sample - TP-8-2024-1.0-1.5		0	
						127	
					2.0		
	2 -			Fine to Medium Sand, Light Brown, dry, no odor, no staining	2.0	127	
	3 -					0.2	
	4 -					0	
	7						
	5 -					0	
	6 -					0	
	7 -					0	
	_				8.0		
	8 -	* * * * *		Silt, Gray, moist, no odor, no staining. Sample - TP-8-2024-8.0-8.5		0	•
		* * * * * * * * * *					
	9 -	*				0	
		* * * * * * * * * *					
	10 -	* * * * * * * * *		End of test pit, no groundwater encountered	10.0	0	
				End of test pit, no groundwater encountered			

NOTES: Refusal due to concrete slab ~ 2 feet bgs at proposed location. 2nd attempt was in between prior building footprint.

Client: CRA Project: Yaffa

Date Started: 09/12/2024 **Date Completed:** 09/12/2024 Well Completion Date: -

Drilling Company: Summit **Driller:** Tim Cornelius

Drill Rig: Drilling Method: Track-Mounted Mini...
Boring Diameter: Total Depth: 10'

Coordinates: 39.932007, -75.116805

Coords Sys: Lat/Lon **Surface Elevation:** N/A

Logged By: MP Checked By: ES

					S
Depth (ft)	Graphic Log	nscs	Visual Classification and Remarks	PID (PPM)	9
		3	3/4-Inch Stone 0.3 Fine to Medium Sand with Fill Material (brick), Light Brown, dry, no odor no staining 0.5	0.2	
1 =			Fine Sand, Light Brown, dry, no odor no staining	0	ı
2 -				0	
3 -				0	
4 -				0	
5 -				0	
6 -				0	
7 -				0	
8 -				0	
9 -				0	
10 -			End of Test Pit, no groundwater encountered	0	

Client: CRA Project: Yaffa

Date Started: 09/12/2024 **Date Completed:** 09/12/2024

Well Completion Date: -

Drilling Company: Summit **Driller:** Tim Cornelius

Drill Rig: Drilling Method: Track-Mounted Mini...
Boring Diameter: Total Depth: 10'

Coordinates: 39.93239, -75.11706

Coords Sys: Lat/Lon **Surface Elevation:** N/A

Logged By: MP Checked By: ES

_					
Depth (ft)	Graphic Log	NSCS	Visual Classification and Remarks	PID (PPM)	Sample Graphic
_	XIQ		3/4-Inch Stone Fine to Medium Sand, Little Fill Material (brick, debris), Dark Brown, dry, no odor, no staining O.5 / Fine to Medium Sand, Reddish Brown, dry, no odor, no staining. Sample:	0	
1 =			TP-11-2024-1.0-1.5	0	•
2 -				0	
3 -				0	
4 -				0	
5 -				o	
6 -				o	
7 -				0	
8 -				0	
9 -				0	
10 -			End of test pit, no ground water encountered	0	

TEST PIT: TP-12

Client: CRA Project: Yaffa

Date Started: 09/12/2024 **Date Completed:** 09/12/2024

Well Completion Date: -

Drilling Company: Summit **Driller:** Tim Cornelius

Drill Rig: Drilling Method: Track-Mounted Mini...
Boring Diameter: Total Depth: 5'

Coordinates: 39.93239, -75.11706

Coords Sys: Lat/Lon **Surface Elevation:** N/A

Logged By: MP Checked By: ES

Project Address 616 Chestnut Street, Camden, NJ

Graphic Log	nscs	Visual Classification and Remarks		(Wd	raphic
		(MAA) OIA	Sample Graphic		
1	3	3/4-Inch Stone			
		Fine to Medium Sand with Fill Material (garbage, plastic, metal, brick).	0.3		
		Dark Brown, no odor, no staining. Sample: TP-12-2024-1.0-1.5		0.1	
				0	
				o	
		Fine to Medium Sand, Brown, no odor, no staining	3.0	0	
				0	
		End of Test Pit , no groundwater encounered	5.0	0	
			Fine to Medium Sand, Brown, no odor, no staining Fine to Medium Sand, Brown, no odor, no staining	Fine to Medium Sand with Fill Material (garbage, plastic, metal, brick), Dark Brown, no odor, no staining. Sample: TP-12-2024-1.0-1.5 Fine to Medium Sand, Brown, no odor, no staining 3.0 Fine to Medium Sand, Brown, no odor, no staining	Fine to Medium Sand with Fill Material (garbage, plastic, metal, brick), Dark Brown, no odor, no staining. Sample: TP-12-2024-1.0-1.5 o Fine to Medium Sand, Brown, no odor, no staining 3.0 o

MONITORING WELL: MW-1

Client: CRA Project: Yaffa

Date Started: 09/05/2024 Date Completed: 09/05/2024 Well Completion Date: - Drilling Company: ECDI Driller: Joe Barnak

Drill Rig: Geoprobe 7822DT
Drilling Method: Direct Push
Boring Diameter: 2 in
Total Depth: 17'

Coords Sys: Lat/Lon
Surface Elevation: 21.5'

Coordinates: 39.932379, -75.117293

Logged By: ES **Checked By:** CV

Project Address 616 Chestnut Street, Camden, NJ

					_	Sample	s		
Water Levels	Depth (ft)	Graphic Log	NSCS	Visual Classification and Remarks		PID (PPM)	Sample Graphic	m 0 0	Well
\dagger				3/4-Inch Stone	0.3			44 64	2
	1 -			Fine to Medium Sand, Some Fill (brick), Little Gravel, Brown, loose, dry, no odor, no staining	10			4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2
				Fine to Medium Sand with Fill (cinders, brick, and concrete), Dark	1.0			44 44	3
	2 -	platerate rater		Brown, loose, dry, no odor, no staining	2.0			44 44	Backfilled with
				Fill (cinders and concrete), Black, loose, dry, no odor, no staining				44 14	Bentonite Chips
	3 -	(4,1,1,1,1,10)		Fine to Medium Sand, medium dense, Reddish Brown, dry, no odor,	3.0				2
				no staining					4
	4 -					0	1	44	
					5.0				Backfilled with
	5 -			Fine to Medium Sand, medium dense, Light Brown, dry, no odor,	3.0	0		333	Choker Sand
				no staining. Samples : GP-1-2024-6-6.5 and GP-1-2024-8-8.5					
	6 -					0			
						•			
	7 -					0			
	8 -								
	8 7	in all all all all all a				0	-		
	9 -				9.0	0			
	3			Fine to Medium Sand, medium dense, Reddish Brown, moist, no		Ü			
Z	10 -				10.0	0			
				Fine to Medium Sand, Little to trace Silt, Reddish Brown, saturated, no odor, no staining. Water table @ 10 Feet					
	11	,,,,,,			11.0	0			* Backfilled with
				Silty Sand , reddish brown, medium dense to soft, wet to saturated, no odor, no staining.					Filter Sand
	12 -			no odor, no oddining.		0			
	13 -					0			
	14 -					0			
					15.0				
	15 -	11/11/			15.0	0			
	16 -	1							
	17			End of Monitoring Well					-

NOTES: Well set at 17 Feet bgs. Three foot stickup with protective steel casing.

MONITORING WELL: MW-2

Client: CRA Project: Yaffa

Date Started: 09/05/2024 **Date Completed:** 09/05/2024 Well Completion Date: -

Drilling Company: ECDI **Driller:** Joe Barnak Drill Rig: Geoprobe 6712DT
Drilling Method: Auger
Boring Diameter: Total Depth: 15'

Coordinates: 39.932272, -75.116417

Coords Sys: Lat/Lon **Surface Elevation: 20.4**'

Logged By: ES Checked By: CV

Project Address 616 Chestnut Street, Camden, NJ

					-	Sample	S		
Water Levels Depth (ft)	Depth (ft)	Graphic Log	nscs	Visual Classification and Remarks		(Mad) Old	Sample Graphic		Well
\dagger				3/4-Inch Stone	0.3			44 14	
	1 -			Fine to Medium Sand And Fill Material (ash, brick, metal debris), Dark Brown, dry, medium dense, no odor, no staining. Sample: GP-2-2024-1-1.5			_		* Backfilled wi
l	2 -	100		Fine to Medium Sand, with Some Fill Material (ash, coal	2.0			444	Bentonite Cl
	3 -			fragment), Brown, dry, medium dense, no odor, no staining	3.0				Backfilled w Choker Sand
	4 -			Fine to Medium Sand , Reddish Brown, dry to moist, medium dense, no odor, no staining		0			
	5 -					0			
	6 -				7.0	0			
	7 -			Fine to Medium Sand, Gray mixed with some Brown @ 9-10 ft, dry, medium dense, no odor, no staining. Sample: GP-2-2024-1-1.5	7.0	0			
	8 -					0	_		
	9 -					0			* Backfilled v Filter Sand
	10 -			Fine to Medium Sand, Some to little Silt, Light Brown, wet,	10.0	0			
	11 -	* * * * * * * * *		medium dense, no odor, no staining Silt, Gray, soft, wet, no odor, no staining	11.0	0			
	12 -	* * * * * * * * * * * * * * * * * * *				0			
	13 -	* * * * * * * * * * * * * * * * * * *				0			
	14 -	* * * * * * * * * * * * * * *		Fine to Medium Sand, little to trace Silt, Gray, wet, medium	14.0	0			
	15 -			dense, no odor, no staining	15.0	0			
	16 -								

NOTES: Well set at 15 Feet bgs. Three foot stickup with protective steel casing.

MONITORING WELL: MW-3

Client: CRA Project: Yaffa

Date Started: 09/05/2024
Date Completed: 09/05/2024
Well Completion Date: -

Drilling Company: ECDI Driller: Joe Barnak Drill Rig: Geoprobe 7822DT

Drilling Method: Auger Boring Diameter: -Total Depth: 18' **Coordinates:** 39.931890, -75.117318

Coords Sys: Lat/Lon Surface Elevation: 20.8'

Logged By: ES **Checked By:** CV

Project Address 616 Chestnut Street, Camden, NJ

			81			Sample	S		
Water Levels	Depth (ft)	Graphic Log	nscs	Visual Classification and Remarks		(Mdd) Old	Sample Graphic	P. 9 . 5	Weil
П			e e	3/4-Inch Stone	0.3	0		944	
	1 -			Fine to Medium Sand dry loose And Fill (brick, asphalt, ash), Brown, no odor, no staining. Sample GP-3-2024-1-1.5		0	_	000000	
	2 -					0		40 A0	2
	3 -			Fine to Medium Sand, dry, medium dense, Light Brown, no odor, no	3.0	0		444444	Backfilled with Bentonite Chips
	4 -			staining		0		444444	
	5 -			Fine to Medium Sand, dry, medium dense, Reddish Brown, no	5.0	0		10000 10000	
	6 -			odor, no staining. Sample GP-3-2024-9.5-10		0			
	7 -					0			
	8 -					0			
	9 -					0			
$ \subseteq $	10 -			Fine to Medium Sand, saturated, medium dense, Reddish Brown,	0.0	0			
	11 -			Water table @ 10 feet bgs, no odor, no staining Fine to Medium Sand, saturated, medium dense, Trace Silt,	11.0	0			Backfilled with #
	12 -			Brown, no odor, no staining		0			Filter Sand
	13 -			13	3.5	0			
	14 -			Silty Sand, saturated, medium dense, Reddish Brown, no odor, no staining	4.0	0			
	15 -			Fine to Medium Sand, wet, medium dense, Brown, no odor, no staining		0			
	16 -			Silty Sand, wet, soft, Light Gray, no odor, no staining	6.0	0			
	17 -				17.5	0)		
	18 -			Fine to Medium Sand, moist, medium dense, Gray, no odor, no staining	8.0_/				
	19 -			End of Boring					

NOTES: Well set at 17 Feet bgs. Three foot stickup with protective steel casing.

New Jersey State Department of Environmental Protection Bureau of Water Allocation and Well Permitting Mail Code 401-04Q PO BOX 420 Trenton, NJ 08625-0420 Tel: 609-984-6831

Well Permit Number **E202409317**

WELL PERMIT

New Well

The New Jersey Department of Environmental Protection grants this permit in accordance with your application, attachments accompanying same application, and applicable laws and regulations. This permit is also subject to further conditions and stipulations enumerated in the supporting documents which are agreed to by the permittee upon acceptance of the permit

Certifying Driller:	JAMES W DUFFY, MASTER LICE	ENSE # 0001581		
Permit Issued to:	EAST COAST DRILLING, INC.			
Company Address:	200 CENTURY PKWY STE B MC	DUNT LAUREL, NJ 080:	54	
PROPERTY OWNER				
Name: CAMDEN CI	ГҮ			
Organization: CAMDEN	N CITY			
Address: PO BOX 9512	20			
City: Camden	State: New Jer	rsey	Zip Code: 08101	
PROPOSED WELL LO	CATION			
Facility Name: S. Yaffa	& Sons, Inc.			
Address: SS CHESTNU	JT 60 E 6TH ST			
County: <u>Camden</u>	Municipality: Camden City	Lot: 41	Block: 331	
<u> </u>	My State Plane (NAD83) - USFEET	Local ID:	MW-1	
SITE CHARACTERIST	FICS			
PROPOSED CONSTRU	JCTION			
WELL USE: _MONITO	RING	Other Use(s):		
Diameter (in.): 2		Regulatory Program	gs:	
= 1 (0)				
Pump Capacity (gpm): _0)		N	
Drilling Method: Hollov	v Stem Augers			
Attachments:				
SPECIFIC CONDITION	NS/REOUIREMENTS			

Approval Date: September 6, 2024 **Expiration Date:** September 6, 2025

Approved by the authority of: Shawn M. LaTourette Commissioner

Kathleen Burkhard, Bureau Chief Bureau of Water Allocation and Well Permitting

Well Permit -- Page 1 of 2

New Jersey State Department of Environmental Protection Bureau of Water Allocation and Wells

PO BOX 420 Trenton, NJ 08625-0420 Tel: 609-984-6831

Well Permit Number E202409317

WELL PERMIT

New Well

DEVIATION INFORMATION	ON
Purpose:	
Unusual Conditions:	
Reason for Deviation:	
Proposed Well Construction	

GENERAL CONDITIONS/REQUIREMENTS

A copy of this permit shall be kept at the worksite / on the property and shall be exhibited upon request. [N.J.A.C. 7:9D-1]

A well record must be submitted by the well driller to the Bureau of Water Systems and Well Permitting. Unless prior written approval is obtained from the Bureau of Water Systems and Well Permitting the well record shall be submitted electronically through the New Jersey Department of Environmental Protection's Regulatory Services Portal Submit Well Record: within ninety (90) days after the well is completed.[N.J.A.C. 7:9D-1]

All well drilling/pump installation activities shall comply with N.J.A.C. 7:9D-1 et seq. [N.J.A.C. 7:9D-1]

For this permit to remain valid, the well approved in this permit shall be constructed within one year of the effective date of the permit. [N.J.A.C. 7:9D-1]

If the pump capacity applied for is less than 70 gpm, no subsequent increase to 70 gpm or more shall be made without prior approval of the Bureau of Water Systems and Well Permitting. [N.J.A.C. 7:9D-1]

If the use of the well is to be changed a well permit for the proposed use of the well shall be submitted for review and approval. [N.J.A.C.

If you or a future property owner intend to redesignate this well as a Category 1 well (domestic, non-public, community water supply or public non-community water supply wells), the well must be constructed as a Category 1 well per the Well Construction and Abandonment Regulations at N.J.A.C. 7:0D-1.1 et seq. In addition, if the current or future property owner intends to have this well redesignated as a community water supply well, the well must be constructed by a Master well driller, which would include having a Master well driller on-site at all times during construction of the well, as specified in the Well Construction and Abandonment Regulations. Otherwise, the New Jersey Department of Environmental Protection will not allow the well to be redesignated, and a new well would have to be installed. [N.J.A.C. 7:9D-1.7((a))1i]

In accepting this permit the Property Owner and Driller agree to abide by the following terms and conditions [N.J.A.C. 7:9D-1]

In the event that this well is not constructed the well driller shall notify the Bureau of Water Systems and Well Permitting of the permit cancellation. Unless prior written approval is obtained from the Bureau of Water Systems and Well Permitting the Cancellation notification shall be submitted electronically through the New Jersey Department of Environmental Protection's Regulatory Services Portal Submit Well Permit Cancellation: by the expiration date of this permit.[N.J.A.C. 7:9D-1]

In the event this well is abandoned, the Owner or Well driller shall assume full responsibility for having the well decommissioned in a manner satisfactory to the New Jersey Department of Environmental Protection in accordance with the provisions of N.J.A.C. 7:9D-1 et seq. [N.J.A.C. 7:9D-1]

The granting of this permit shall not be construed in any way to affect the title or ownership of property, and shall not make the New Jersey Department of Environmental Protection or the State a party in any suit or question of ownership of property. [N.J.A.C. 7:9D-1]

The issuance of this permit shall not be deemed to affect in any way action by the New Jersey Department of Environmental Protection on any future application. [N.J.A.C. 7:9D-1]

This permit conveys no rights, either expressed, or implied to divert water. [N.J.A.C. 7:9D-1]

This permit does not waive the obtaining of Federal or other State or local Government consent when necessary. This permit is not valid and no work shall be undertaken until such time as all other required approvals and permits have been obtained. [N.J.A.C. 7:9D-1]

This permit is NONTRANSFERABLE [N.J.A.C. 7:9D]

This well shall not be used for the supply of potable / drinking water. [N.J.A.C. 7:9D-1]

New Jersey State Department of Environmental Protection Bureau of Water Allocation and Well Permitting Mail Code 401-04Q PO BOX 420 Trenton, NJ 08625-0420 Tel: 609-984-6831

Well Permit Number **E202409321**

WELL PERMIT

New Well

The New Jersey Department of Environmental Protection grants this permit in accordance with your application, attachments accompanying same application, and applicable laws and regulations. This permit is also subject to further conditions and stipulations enumerated in the supporting documents which are agreed to by the permittee upon acceptance of the permit

Certifying Driller:	JAMES W DUFFY, MASTER LICI	ENSE # 0001581		
Permit Issued to:	EAST COAST DRILLING, INC.			
Company Address:	200 CENTURY PKWY STE B MC	DUNT LAUREL, NJ 080	54	
PROPERTY OWNER				
Name: CAMDEN CI	ГУ			
Organization: <u>CAMDEN</u>	N CITY			
Address: PO BOX 9512	20			
City: Camden	State: New Jer	rsey	Zip Code: <u>08101</u>	
PROPOSED WELL LO	CATION			
Facility Name: S. Yaffa	& Sons, Inc.			
Address: 624-644 Chest	tnut Street			
County: Camden	Municipality: Camden City	Lot: 61	Block: 331	
• · · · ———	Northing (Y): 400840 NJ State Plane (NAD83) - USFEET	Local ID:	_MW-2	
SITE CHARACTERIST	FICS			
PROPOSED CONSTRU	JCTION			
WELL USE: MONITO	RING	Other Use(s):		
Diameter (in.): 2		Regulatory Program	gs:	
Depth (ft.): 30				
Pump Capacity (gpm): _0)		N	
Drilling Method: Hollov	w Stem Augers			
Attachments:				
SPECIFIC CONDITION	NS/REQUIREMENTS			

Approval Date: September 6, 2024
Expiration Date: September 6, 2025

Approved by the authority of: Shawn M. LaTourette Commissioner

Kathleen Burkhard, Bureau Chief Bureau of Water Allocation and Well Permitting

New Jersey State Department of Environmental Protection Bureau of Water Allocation and Wells

PO BOX 420 Trenton, NJ 08625-0420 Tel: 609-984-6831

Well Permit Number E202409321

WELL PERMIT

New Well

DEVIATION INFORMATION	ON
Purpose:	
Unusual Conditions:	
Reason for Deviation:	
Proposed Well Construction	

GENERAL CONDITIONS/REQUIREMENTS

A copy of this permit shall be kept at the worksite / on the property and shall be exhibited upon request. [N.J.A.C. 7:9D-1]

A well record must be submitted by the well driller to the Bureau of Water Systems and Well Permitting. Unless prior written approval is obtained from the Bureau of Water Systems and Well Permitting the well record shall be submitted electronically through the New Jersey Department of Environmental Protection's Regulatory Services Portal Submit Well Record: within ninety (90) days after the well is completed.[N.J.A.C. 7:9D-1]

All well drilling/pump installation activities shall comply with N.J.A.C. 7:9D-1 et seq. [N.J.A.C. 7:9D-1]

For this permit to remain valid, the well approved in this permit shall be constructed within one year of the effective date of the permit. [N.J.A.C. 7:9D-1]

If the pump capacity applied for is less than 70 gpm, no subsequent increase to 70 gpm or more shall be made without prior approval of the Bureau of Water Systems and Well Permitting. [N.J.A.C. 7:9D-1]

If the use of the well is to be changed a well permit for the proposed use of the well shall be submitted for review and approval. [N.J.A.C.

If you or a future property owner intend to redesignate this well as a Category 1 well (domestic, non-public, community water supply or public non-community water supply wells), the well must be constructed as a Category 1 well per the Well Construction and Abandonment Regulations at N.J.A.C. 7:0D-1.1 et seq. In addition, if the current or future property owner intends to have this well redesignated as a community water supply well, the well must be constructed by a Master well driller, which would include having a Master well driller on-site at all times during construction of the well, as specified in the Well Construction and Abandonment Regulations. Otherwise, the New Jersey Department of Environmental Protection will not allow the well to be redesignated, and a new well would have to be installed. [N.J.A.C. 7:9D-1.7((a))1i]

In accepting this permit the Property Owner and Driller agree to abide by the following terms and conditions [N.J.A.C. 7:9D-1]

In the event that this well is not constructed the well driller shall notify the Bureau of Water Systems and Well Permitting of the permit cancellation. Unless prior written approval is obtained from the Bureau of Water Systems and Well Permitting the Cancellation notification shall be submitted electronically through the New Jersey Department of Environmental Protection's Regulatory Services Portal Submit Well Permit Cancellation: by the expiration date of this permit.[N.J.A.C. 7:9D-1]

In the event this well is abandoned, the Owner or Well driller shall assume full responsibility for having the well decommissioned in a manner satisfactory to the New Jersey Department of Environmental Protection in accordance with the provisions of N.J.A.C. 7:9D-1 et seq. [N.J.A.C. 7:9D-1]

The granting of this permit shall not be construed in any way to affect the title or ownership of property, and shall not make the New Jersey Department of Environmental Protection or the State a party in any suit or question of ownership of property. [N.J.A.C. 7:9D-1]

The issuance of this permit shall not be deemed to affect in any way action by the New Jersey Department of Environmental Protection on any future application. [N.J.A.C. 7:9D-1]

This permit conveys no rights, either expressed, or implied to divert water. [N.J.A.C. 7:9D-1]

This permit does not waive the obtaining of Federal or other State or local Government consent when necessary. This permit is not valid and no work shall be undertaken until such time as all other required approvals and permits have been obtained. [N.J.A.C. 7:9D-1]

This permit is NONTRANSFERABLE [N.J.A.C. 7:9D]

This well shall not be used for the supply of potable / drinking water. [N.J.A.C. 7:9D-1]

New Jersey State Department of Environmental Protection Bureau of Water Allocation and Well Permitting Mail Code 401-04Q PO BOX 420 Trenton, NJ 08625-0420 Tel: 609-984-6831

Well Permit Number **E202409319**

WELL PERMIT

New Well

The New Jersey Department of Environmental Protection grants this permit in accordance with your application, attachments accompanying same application, and applicable laws and regulations. This permit is also subject to further conditions and stipulations enumerated in the supporting documents which are agreed to by the permittee upon acceptance of the permit

Certifying Driller:	JAMES W DUFFY	, MASTE	R LICENSE	# 0001581			
Permit Issued to:	EAST COAST DRI	ILLING, I	INC.				
Company Address:	200 CENTURY PK	WY STE	B MOUNT	LAUREL, NJ 0805	4		
PROPERTY OWNER							
Name: CAMDEN CIT	ГҮ						
Organization: CAMDEN	N CITY						
Address: PO BOX 9512	0						
City: Camden		State: N	New Jersey		Zip Code:	08101	
PROPOSED WELL LO	CATION						
Facility Name: S. Yaffa	& Sons, Inc.						
Address: 601-609 SYCA	AMORE STREET						
County: Camden	Municipality: _0	Camden C	City	Lot: 80		Block: _331	
Easting (X): 319004	Northing (Y):400	0703	Local ID:	MW-3		
Coordinate System:	NJ State Plane (NAI	083) - US	FEET				
SITE CHARACTERIST	TCS						
PROPOSED CONSTRU	CTION						
WELL USE: MONITO	RING		Ot	her Use(s):			
Diameter (in.): 2				gulatory Program quiring Wells/Boring	gs:		
Depth (ft.): 30			Ca	se ID Number:			
Pump Capacity (gpm): _0	1		De	viation Requested:	N		
Drilling Method: Hollov	v Stem Augers						
Attachments:							

Approval Date: September 6, 2024 Expiration Date: September 6, 2025

SPECIFIC CONDITIONS/REQUIREMENTS

Approved by the authority of: Shawn M. LaTourette Commissioner

Kathleen Burkhard, Bureau Chief Bureau of Water Allocation and Well Permitting

Kahlen Borce

Well Permit -- Page 1 of 2

New Jersey State Department of Environmental Protection Bureau of Water Allocation and Wells

PO BOX 420 Trenton, NJ 08625-0420 Tel: 609-984-6831

Well Permit Number E202409319

WELL PERMIT

New Well

DEVIATION INFORMATION	ON
Purpose:	
Unusual Conditions:	
Reason for Deviation:	
Proposed Well Construction	

GENERAL CONDITIONS/REQUIREMENTS

A copy of this permit shall be kept at the worksite / on the property and shall be exhibited upon request. [N.J.A.C. 7:9D-1]

A well record must be submitted by the well driller to the Bureau of Water Systems and Well Permitting. Unless prior written approval is obtained from the Bureau of Water Systems and Well Permitting the well record shall be submitted electronically through the New Jersey Department of Environmental Protection's Regulatory Services Portal Submit Well Record: within ninety (90) days after the well is completed.[N.J.A.C. 7:9D-1]

All well drilling/pump installation activities shall comply with N.J.A.C. 7:9D-1 et seq. [N.J.A.C. 7:9D-1]

For this permit to remain valid, the well approved in this permit shall be constructed within one year of the effective date of the permit. [N.J.A.C. 7:9D-1]

If the pump capacity applied for is less than 70 gpm, no subsequent increase to 70 gpm or more shall be made without prior approval of the Bureau of Water Systems and Well Permitting. [N.J.A.C. 7:9D-1]

If the use of the well is to be changed a well permit for the proposed use of the well shall be submitted for review and approval. [N.J.A.C.

If you or a future property owner intend to redesignate this well as a Category 1 well (domestic, non-public, community water supply or public non-community water supply wells), the well must be constructed as a Category 1 well per the Well Construction and Abandonment Regulations at N.J.A.C. 7:0D-1.1 et seq. In addition, if the current or future property owner intends to have this well redesignated as a community water supply well, the well must be constructed by a Master well driller, which would include having a Master well driller on-site at all times during construction of the well, as specified in the Well Construction and Abandonment Regulations. Otherwise, the New Jersey Department of Environmental Protection will not allow the well to be redesignated, and a new well would have to be installed. [N.J.A.C. 7:9D-1.7((a))1i]

In accepting this permit the Property Owner and Driller agree to abide by the following terms and conditions [N.J.A.C. 7:9D-1]

In the event that this well is not constructed the well driller shall notify the Bureau of Water Systems and Well Permitting of the permit cancellation. Unless prior written approval is obtained from the Bureau of Water Systems and Well Permitting the Cancellation notification shall be submitted electronically through the New Jersey Department of Environmental Protection's Regulatory Services Portal Submit Well Permit Cancellation: by the expiration date of this permit.[N.J.A.C. 7:9D-1]

In the event this well is abandoned, the Owner or Well driller shall assume full responsibility for having the well decommissioned in a manner satisfactory to the New Jersey Department of Environmental Protection in accordance with the provisions of N.J.A.C. 7:9D-1 et seq. [N.J.A.C. 7:9D-1]

The granting of this permit shall not be construed in any way to affect the title or ownership of property, and shall not make the New Jersey Department of Environmental Protection or the State a party in any suit or question of ownership of property. [N.J.A.C. 7:9D-1]

The issuance of this permit shall not be deemed to affect in any way action by the New Jersey Department of Environmental Protection on any future application. [N.J.A.C. 7:9D-1]

This permit conveys no rights, either expressed, or implied to divert water. [N.J.A.C. 7:9D-1]

This permit does not waive the obtaining of Federal or other State or local Government consent when necessary. This permit is not valid and no work shall be undertaken until such time as all other required approvals and permits have been obtained. [N.J.A.C. 7:9D-1]

This permit is NONTRANSFERABLE [N.J.A.C. 7:9D]

This well shall not be used for the supply of potable / drinking water. [N.J.A.C. 7:9D-1]

Service ID: 1807023

This document has not yet been reviewed and approved or denied by the NJ DEP. Deficiencies in submittal information or actual construction may result in denial.

WELL RECORD SUBMITTAL PDF

PROPERTY C	OWNER:	CAMDEN CITY CAMDEN CITY							
Organization:		CAMDEN C	ITY						
Address:		PO BOX 95120, Camden (Camden), New Jersey 08101							
WELL LOCA	ΓΙΟΝ:	S. Yaffa & Sons, Inc.							
Address:		SS CHESTNUT 60 E 6TH ST							
County: C	amden		: Camden Cit		<u>41</u> E	Block: <u>331</u>			
Easting(X): 3	19024		400879			J State Plane (NAD83)	- USFEET		
	Method: G	• • •			of Reference: V				
GPS N	/lanufacturer: <u>T</u>	rimble		Sı	urveyor Name:_				
	GPS Model: F								
	Accuracy: 1	0		<i>A</i>	Accuracy units: <u>F</u>	eet			
WELL USE:	Monitoring	1			DATE WELL	STARTED: 09/	06/2024		
Other Use(s):							06/2024		
` ,						<u> </u>	00/2021		
WELL CONS			5 1/6) 4.=	_	/				
Permit N			n Drilled(ft): <u>17</u>	A .		ng Company:			
	09317		ell Depth(ft): 17			Driller Name: Joseph B	arnak		
Local ID: MW	<u>-1</u>	Well w	as finished: <u>Al</u>	oove Grade	_ \	License No.: <u>534717</u>			
	Depth to Top	Depth to	Diameter			Wgt./Rating/Sc			
	(ft.)	Bottom (ft.)	(inches)	V	<u>Material</u>		no.)		
Borehole(s)	0	17	8	,	N/A	N/A			
Casing(s)	0	7	2		PVC	Sch. 4	0		
Screen(s)	7	17	2		PVC	.010			
	Depth to Top	Depth to	Outer	Inner		Material	T		
	(ft.)	Bottom (ft.)	Diameter (in)	Diameter (in)	Bentonite (lbs.)	Neat Cement (lbs.)	Water (gal.)		
Grout	0	4	8	2	5	94	8		
Gravel Pack	5	17	8	2	#0				
Gravel Pack	4	5	8	2		#00			
Grouting Meth	od: <u>Pressure</u>	method (Tren	nie Pipe)	Drill	lina Method: Hol	low Stem Augers			
		motriod (Tron	no r ipoj		g	iow Otom rtagoro			
Additional Info		b	Y						
Atta	chments:								
RECORD OF	TEST			Dept	h to Pump: _	ft. belo	w land surface		

Test Date:			-	Pump Capacity:			gpm	
Static Water Level:	<u>10.</u>	.5	ft. below land surface	e Total Design Head:			_ft.	
Pumping Water Lev	vel:		ft. below land surface	Pump Horsepower:			_	
Water Level Measu	re Tool: M-	Scope		_ If pump tested	Discha	arge Rate:		gpm
Pumping Equipmen	t:			_	Duration	on of Test:		hours
Well Yield:			_gpm	Date Boring Decom	missio	ned:		
PUMPING EQUIPM	IENT AND	ADDITIO	NAL	Well Development Per	riod: <u>1</u>			_hours
INFORMATION				Method of Developme	nt: _			_
Installed:				Protective Casing:		Yes		_
Installer's Name:				Drilling Fluid:	_			_
Installer's Registrati	on No.:			Orill Rig: <u>7822</u> 1		822DT		_
Pump Type:				Health and Safety Plar	n: <u>\</u>	Yes		_
GEOLOGIC LOG								
Depth to Top	Depth to Bo	ottom	Color	USCS		Add	litional De	escription
				GP - Poorly gra	aded			
				gravels and gravel-sar	nd			
0	7		Light Brown	mixtures, little or no fin	nes			
				GW - Well-grad	ded			
				gravels and gravel-sar	nd			
7	12		Light Brown	mixtures, little or no fin	nes			
				SW - Well-grad	ded			
				sands and gravelly sar	nds,			

little or no fines

17

Light Brown

Service ID: 1807040

This document has not yet been reviewed and approved or denied by the NJ DEP. Deficiencies in submittal information or actual construction may result in denial.

WELL RECORD SUBMITTAL PDF

PROPERTY OWNER:		CAMDEN CITY CAMDEN CITY							
Organization:		CAMDEN CITY							
Address:		PO BOX 95120, Camden (Camden), New Jersey 08101							
WELL LOCATION:		S. Yaffa & S	ons, Inc.						
Address:		624-644 Ch	estnut Street						
County: C	amden	Municipality	Camden Cit	y Lot:	<u>61</u> BI	ock: <u>331</u>			
Easting(X): 3	19279		400840	-					
	Method: G	SPS	Point of Reference: Well						
GPS M	lanufacturer: <u>T</u>	rimble	mble Surveyor Name:						
	GPS Model: P	athfinder		Surve	eyor License #:				
	Accuracy: 1	0		A	Accuracy units: <u>Fe</u>	eet			
WELL USE:	Monitorino	נ			DATE WELL S	STARTED: 09/	06/2024		
Other Use(s):	•				DATE WELL (06/2024		
WELL CONSTRUCTION					2.00				
Permit Number Total Depth Drille			` '	A .	Drilling Company:				
E202409321 Finished Well Depth(ft): 15				Driller Name: <u>Joseph Barnak</u> Driller Name: <u>Joseph Barnak</u>					
Local ID: MW-2 Well was finished: Above Grade License No.: 534717									
						Y			
	Depth to Top	Depth to	Diameter			Wgt./Rating/Sc			
	(ft.)	Bottom (ft.)	(inches)	V	Material	(lbs/sch	,		
Borehole(s)	0	15	8	-	N/A N/A				
Casing(s)	0	5	2		PVC	Sch. 4			
Screen(s)	5	15	2		PVC	.010			
	Depth to Top	Depth to	Outer	Inner		Material			
	(ft.)	Bottom (ft.)	Diameter (in)	Diameter (in)	Bentonite (lbs.)	Neat Cement (lbs.)	Water (gal.)		
Grout	0	2	8	2	5	94	8		
Gravel Pack	3	15	8	2	#0				
Gravel Pack	2	3	8	2	2 #00				
Grouting Meth	od: <u>Pressure</u>	method (Trem	nie Pipe)	Drill	ling Method: <u>Hollo</u>	ow Stem Augers			
Additional Info	ormation:								
	chments:	\							
RECORD OF TEST			Dept	h to Pump:	ft. belo	w land surface			

Test Date:			_	Pump Capacity: _		gpm	
Static Water Level:		10.5	_ft. below land surface	e Total Design Head:_		ft.	
Pumping Water Le	evel:	ft. below land surface		e Pump Horsepower:_	Pump Horsepower:		
Water Level Meas	ure Tool:	M-Scope		_ If pump tested [pump tested Discharge Rate:		gpm
Pumping Equipment:				[Duration of		hours
Well Yield:			_gpm	Date Boring Decommissione		: <u> </u>	
PUMPING EQUIP	MENT AN	ID ADDITIO	NAL	Well Development Period: 1			_hours
INFORMATION				Method of Developmer	nt:		
Installed:				Protective Casing: Yes			_
Installer's Name:				Drilling Fluid:			<u> </u>
Installer's Registration No.:				Drill Rig:	<u> 78221</u>	DT	_
Pump Type:				Health and Safety Plan	ety Plan: <u>Yes</u>		_
GEOLOGIC LOG							
Depth to Top	Depth to	Bottom	Color	USCS		Additional D	escription
				GP - Poorly gra	ided		
				gravels and gravel-san	d		
0	5		Light Brown	mixtures, little or no fine	es		
				GW - Well-grad	led		
				gravels and gravel-san	d		
5	10)	Light Brown	mixtures, little or no fine	es		
				GM - Silty grave	els,		

gravel-sand-silt mixtures

Gray

10

Service ID: 1807060

This document has not yet been reviewed and approved or denied by the NJ DEP. Deficiencies in submittal information or actual construction may result in denial.

WELL RECORD SUBMITTAL PDF

PROPERTY (OWNER:	CAMDEN CITY CAMDEN CITY							
Organization:		CAMDEN CITY							
Address:		PO BOX 95120, Camden (Camden), New Jersey 08101							
WELL LOCA	TION:	S. Yaffa & S	ons. Inc.						
Address:									
	amden	601-609 SYCAMORE STREET Municipality: Camden City Lot: 80 Block: 331							
Easting(X): 3			400703	•			3) - USFEET		
3() =	Method: G	• ,							
GPS N		rimble Surveyor Name:							
					•				
	Accuracy: 1	Surveyor License #: 10							
WELL USE:	Monitoring				•		9/06/2024		
Other Use(s)					DATE WELL COMPLETED		09/06/2024		
, ,					DATE WELL	<u></u>	<u>// 00/2024</u>		
WELL CONS									
Permit N		•	n Drilled(ft): <u>17</u>	Α.		ng Company:			
E2024	09319	Finished We	II Depth(ft): <u>17</u>	7	Driller Name: <u>Joseph Barnak</u>				
Local ID: MW-3 Well was finished: Ab				oove Grade	e Grade License No.: 534717				
						V			
	Depth to Top	Depth to	Diameter			Wgt./Rating/S	creen Slot#		
	(ft.)	Bottom (ft.)	(inches)	V	Material	(lbs/scl	<u>ո no.)</u>		
Borehole(s)	0	17	8	,	N/A	N/A	4		
Casing(s)	0	7	2		PVC Sch. 40		40		
Screen(s)	7	17	2		PVC .010				
					,				
		Donth to	Outor	linnor		Material			
	Depth to Top (ft.)	Depth to	Outer Diameter (in)	Inner Diameter (in)	Bentonite (lbs.)	Neat Cement (lbs.)	Water (gal.)		
Grout	0	4	8	2	5	94	8		
Gravel Pack	5	17	8	2	Ŭ	#0			
Gravel Pack	4	5	8	2	#00				
			47 *	Б. "	P	O: 4			
Grouting Metr	nod: <u>Pressure</u>	<u>method (Trem</u>	nie Pipe)	Drii	ling Method: Holl	ow Stem Augers			
Additional Inf	ormation:		V						
Atta	chments:								
RECORD OF TEST				Dept	Depth to Pump:ft. below land surface				

Test Date:			-	Pump Capacity:			gpm	
Static Water Level:		.5	ft. below land surface	e Total Design Head:			_ft.	
Pumping Water Lev	vel:		ft. below land surface	Pump Horsepower:	Pump Horsepower:		_	
Water Level Measu	re Tool: M-	M-Scope		_ If pump tested	If pump tested Discharge Ra			gpm
Pumping Equipmen	t:			_	Duration	on of Test:		hours
Well Yield:		gpm		Date Boring Decommissioned:		ned:		
PUMPING EQUIPM	IENT AND	ADDITIO	NAL	Well Development Per	riod: <u>1</u>			_hours
INFORMATION				Method of Developme	nt: _			_
Installed:				Protective Casing:		Yes		_
Installer's Name:				Drilling Fluid:				_
Installer's Registrati	on No.:			Drill Rig:	Orill Rig: <u>782</u>			_
Pump Type:				Health and Safety Plar	n: <u>\</u>	Yes		_
GEOLOGIC LOG								
Depth to Top	Depth to Bo	ottom	Color	USCS		Add	litional De	escription
				GP - Poorly gra	aded			
				gravels and gravel-sar	nd			
0	7		Light Brown	mixtures, little or no fin	nes			
				GW - Well-grad	ded			
				gravels and gravel-sar	nd			
7 12 Light Brown		Light Brown	mixtures, little or no fin	nes				
				SW - Well-grad	ded			
				sands and gravelly sar	nds,			

little or no fines

17

Light Brown

New Jersey Department of Environmental Protection Site Remediation Program

Monitoring Well Certification Form B - Location Certification

Date Stamp (For Department use only)

SECTION A. SITE NAME AND LOCATION								
Site Name: S. Yaffa & Sons, Inc.								
List all AKAs:								
Street Address: SS Chestnut 60 E 6th Street								
Municipality: City of Camden	(Township, Borough or City)							
County: Camden	· · · · · · · · · · · · · · · · · · ·							
Program Interest (PI) Number(s): Case Tracking Number(s):								
SECTION B. WELL OWNER AND LOCATION								
Name of Well OwnerCity of Camden								
. Well Location (Street Address) SS Chestnut 60 E 6th Street								
Well Location (Municipal Block and Lot) Block# 331	Lot # _ 41							
SECTION C. WELL LOCATION SPECIFICS								
Well Permit Number (This number must be permanently affixed to the)	e well casing): E202409317							
2. Site Well Number (As shown on application or plans): MW-1								
3. Geographic Coordinate NAD 83 to nearest 1/100 of a second:								
Latitude: North 39° 55′ 56.56" Long	gitude: West <u>75° 07′ 02.25"</u>							
4. New Jersey State Plane Coordinates NAD 83 datum, US survey feet	units, to nearest foot:							
North 400,883 feet Ea	ast _319,029 feet							
5. Elevation of Top of Inner Casing (cap off) at reference mark (nearest	5. Elevation of Top of Inner Casing (cap off) at reference mark (nearest 0.01'): 24.77							
Elevation Top of Outer casing: 25.10 Elevation of ground: 21.5								
Check One: NAVD 88 NGVD 29 On Site Datum Other								
Source of elevation datum (benchmark, number/description and elevassume datum of 100', and give approximated actual elevation (reference)								
Elevations are referenced to N.A.V.D. 1988, Horizontal datum is re	erenced to N.J.S.P.C.SN.A.D. 1983 based on GPS							
Observations April 29, 2022.								
7. Significant observations and notes:								
OFOTION D. LAND OUR VEVOUS OFFITIES A TION								
SECTION D. LAND SURVEYOR'S CERTIFICATION	SEAL SEAL							
I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and that, based on my								
inquiry of those individuals immediately responsible for obtaining the information, I								
believe the submitted information is true, accurate and complete. I am aware that there								
are significant penalties for submitting false information including the possibility of fine and imprisonment.								
1								
Professional Land Surveyor's Signature:	Date: September 23, 2024							
Surveyor's Name: Robert E. Vargo Licens	se Number: GS43261							
Firm Name: Vargo Associates Certificate	Authorization #: 24GA28021200							
Mailing Address: 2771 Delsea Drive								
City/Town: Franklinville State: NJ Zip Code: 08322								
Phone Number: <u>856-694-1716</u> Ext.: <u>110</u>	Fax: <u>856-694-3102</u>							

New Jersey Department of Environmental Protection Site Remediation Program

Monitoring Well Certification Form B - Location Certification

Date Stamp (For Department use only)

SECTION A. SITE NAME AND LOCATION								
Site Name: S. Yaffa & Sons, Inc.								
List all AKAs:								
Street Address: 624-644 Chestnut Street								
Municipality: City of Camden	(Township, Borough or City)							
County: Camden Zip Code: 08103								
Program Interest (PI) Number(s): Case Tracking Number(s):								
SECTION B. WELL OWNER AND LOCATION								
Name of Well Owner City of Camden								
Well Location (Street Address) 624-644 Chestnut Street	2. Well Location (Street Address) 624-644 Chestnut Street							
Well Location (Municipal Block and Lot) Block# 331	Lot # _ 61							
SECTION C. WELL LOCATION SPECIFICS								
Well Permit Number (This number must be permanently affixed to the	e well casing): E202409321							
2. Site Well Number (As shown on application or plans): MW-2	G/							
3. Geographic Coordinate NAD 83 to nearest 1/100 of a second:								
Latitude: North 39° 55′ 56.18" Long	itude: West _ 75° 06′ 59.10"							
4. New Jersey State Plane Coordinates NAD 83 datum, US survey feet	units, to nearest foot:							
North 400,842 feet Ea	ast 319,274 feet							
5. Elevation of Top of Inner Casing (cap off) at reference mark (nearest	0.01'):23.63							
Elevation Top of Outer casing: 23.96 Elevation of	of ground: 20.4							
Check One: NAVD 88 NGVD 29 On Site Da	atum							
Source of elevation datum (benchmark, number/description and elevance assume datum of 100', and give approximated actual elevation (refer								
Elevations are referenced to N.A.V.D. 1988, Horizontal datum is ref	erenced to N.J.S.P.C.SN.A.D. 1983 based on GPS							
Observations April 29, 2022.								
7. Significant observations and notes:								
SECTION D. LAND SURVEYOR'S CERTIFICATION	SEAL							
I certify under penalty of law that I have personally examined and am familiar with the								
information submitted in this document and all attachments and that, base inquiry of those individuals immediately responsible for obtaining the information of the control								
believe the submitted information is true, accurate and complete. I am aware that there								
are significant penalties for submitting false information including the possibility of fine								
and imprisonment.								
Professional Land Surveyor's Signature:	Date: September 23, 2024							
	e Number: GS43261							
	Authorization #: 24GA28021200							
Mailing Address: 2771 Delsea Drive								
City/Town: Franklinville State: NJ Zip Code: 08322								
Phone Number: 856-694-1716 Ext.: 110 Fax: 856-694-3102								

New Jersey Department of Environmental Protection Site Remediation Program

Monitoring Well Certification Form B - Location Certification

Date Stamp (For Department use only)

SECTION A. SITE NAME AND LOCATION								
Site Name: S. Yaffa & Sons, Inc.								
List all AKAs:								
Street Address: 601-609 Sycamore Street								
Municipality: City of Camden	(Township, Borough or City)							
County: Camden Zip Code: 08103								
Program Interest (PI) Number(s): Case Tracking Number(s):								
SECTION B. WELL OWNER AND LOCATION								
Name of Well Owner								
Well Location (Street Address) 601-609 Sycamore Street	2. Well Location (Street Address) 601-609 Sycamore Street							
Well Location (Municipal Block and Lot) Block# 331	Lot # _ 80							
SECTION C. WELL LOCATION SPECIFICS								
Well Permit Number (This number must be permanently affixed to the	e well casing): E202409319							
2. Site Well Number (As shown on application or plans): MW-3								
3. Geographic Coordinate NAD 83 to nearest 1/100 of a second:								
• .	itude: West _ 75° 07′ 02.34"							
4. New Jersey State Plane Coordinates NAD 83 datum, US survey feet	units, to nearest foot:							
North 400,705 feet Ea	ast _319,020 feet							
5. Elevation of Top of Inner Casing (cap off) at reference mark (nearest	0.01'): _ 23.90							
Elevation Top of Outer casing: 24.27 Elevation of	of ground: 20.8							
Check One: NAVD 88 NGVD 29 On Site Da								
6. Source of elevation datum (benchmark, number/description and elevassume datum of 100', and give approximated actual elevation (refer								
Elevations are referenced to N.A.V.D. 1988, Horizontal datum is ref								
Observations April 29, 2022.								
7. Significant observations and notes:								
7. Organicant observations and notes.								
SECTION D. LAND SURVEYOR'S CERTIFICATION	SEAL							
I certify under penalty of law that I have personally examined and am fami								
information submitted in this document and all attachments and that, based on my								
inquiry of those individuals immediately responsible for obtaining the information believe the submitted information is true, accurate and complete. I am aw								
are significant penalties for submitting false information including the possibility of fine								
and imprisonment.								
Professional Land Surveyor's Signature: 1 & E. V1	Date: September 23, 2024							
	e Number: GS43261							
	Authorization #: 24GA28021200							
Mailing Address: 2771 Delsea Drive								
City/Town: Franklinville State: NJ Zip Code: 08322								
Phone Number: 856-694-1716 Ext.: 110	Fax: 856-694-3102							

March 2023 - Stained area (AOC-9b)

March 27, 2023 - Photo taken by Montrose of stained soil (AOC-9b) at Block 331.

May 2024 – Excavation of Stained area (AOC-9b)

May 13, 2024 – Photo taken by Montrose of stained soil (AOC-9b) at Block 33 prior to excavation.

May 13, 2024 – Photo taken by Montrose of stained soil (AOC-9b) at Block 33 excavation extent prior to excavation.

May 13, 2024 – Historic fill (brick and debris) observed within excavation of AOC-9b.

May 13, 2024 – Excavation of AOC-9b completed down to two feet below grade.

June 7, 2024 – Photo taken by Montrose of former stained soil area (AOC-9b) following post-excavation and backfill at Block 331.

Site Investigation September 2024

September 5, 2024 – Soil boring GP-1. Macrocore core liners 0-5 feet, 5-10 feet, 10-15 feet shown.

September 5, 2024 – Soil boring GP-2 (MW-2). Macrocore core liners 0-5 feet, 5-10 feet, 10-15 feet shown.

September 5, 2024 – Soil boring GP-4. Macrocore core liners 0-5 feet, 5-10 feet, 10-15 feet shown.

September 5, 2024 – Soil boring GP-4. Staining observed at 1-1.5 feet bgs.

September 12, 2024 – Test pit TP-1 near MW-1.

September 12, 2024 – Test pit TP-2

September 12, 2024 – Test pit TP-3

September 12, 2024 - Test pit TP-4

September 12, 2024 - Test pit TP-6

September 12, 2024 – Test pit TP-8

September 12, 2024 - Test pit TP-11

September 12, 2024 – Test pit TP-12

September 12, 2024 – MW-1 next to test pit TP-1.